
MA 214 - Introduction to Numerical Analysis
Instructor: Prof. Saikat Mazumdar

Last updated February 23, 2021

Om Prabhu
Undergraduate, Mechanical Engineering
Indian Institute of Technology Bombay

Note To Reader

This document is a compilation of the notes I made while taking the course MA 214 (Introduction
to Numerical Analysis) in my 4th semester at IIT Bombay. It is not meant to serve as a replacement
for any formal textbook or lecture on the subject, since I sometimes overlook the theory parts.

There will probably be many instances where I use certain symbols without explicitly mentioning
what they mean. It is to be assumed that they carry their usual meanings. I may also change the
order of notes compared to those in the slides if I find it more convenient.

If you have any suggestions and/or spot any errors, you know where to contact me.

Contents

1 Interpolation Theory 2

2 Numerical Integration 6

Notation

Pn set of all polynomials of degree 6 n
C[a, b] set of all continuous functions on [a, b] (an infinite dimensional vector space)
Cn[a, b] set of all nth-order continuously differentiable functions on [a, b]

1

1 Interpolation Theory

Suppose (n+ 1) real points (x0, y0), (x1, y1), . . . , (xn, yn) are known. Further these interpolation
points xi are spread out over the interval [a, b]. Then the problem of approximating a function
over the interval [a, b] passing through these points is called interpolation.

There are infinite such functions. We mainly consider polynomial interpolation in this section i.e.
we approximate the interpolant f by an interpolating polynomial pn ∈ Pn.

1.1 Some existence theorems

1. The Joseph-Louis Lagrange Theorem states that given a set of n + 1 real, unique data
points S = {(xi, yi) | i = 0, 1, . . . , n}, there exists a unique polynomial pn ∈ Pn such that

p(xi) = yi for i = 0, 1, . . . , n

We define the norm on C[a.b] as: ||f || = max
x∈[a,b]

|f(x)|. To define the ‘closeness’ of 2 functions

formally, we consider the quantity ||f − g|| = max
x∈[a,b]

|f(x)− g(x)|.

2. Take a function f ∈ C[a, b]. The Weierstrass Approximation Theorem states that given
any real number ε > 0, there exists a polynomial p such that

||f − p|| < ε =⇒ |f(x)− p(x)| < ε ∀x ∈ [a, b]

1.2 Lagrange interpolation formula

Given n + 1 distinct real points x0, x1, . . . , xn and a function f whose values are known at these
points, there exists a unique polynomial pn ∈ Pn such that pn(xi) = f(xi) for i = 0, 1, . . . , n.
Construct nth degree polynomials Ln0 (x), Ln1 (x), . . . , Lnn(x) such that

Lnk(xi) = δki =

{
1 if i = k
0 if i 6= k

=⇒ pn(x) :=
n∑
k=0

f(xk)L
n
k(x)

The lagrange polynomials Lnk can be found using the following algorithm

Lnk(x) :=
n∏

j=0,j 6=k

(x− xj)
(xk − xj)

Note: As will be seen later, the method of divided differences can also be used for polynomial
interpolation. A little bit of manipulation on the Lagrange interpolation formula gives us an
alternative way to calculate the divided difference f [x0, x1, . . . , xn], given by

f [x0, x1, . . . , xn] :=
n∑
k=0

f(xk)
n∏

j=0,j 6=k

1

x− xj

2

1.3 Newton’s divided differences

Let x0, x1, . . . , xn be n+1 real distinct points in [a, b]. Let f : [a, b]→ R be a function whose values
are known at these points. We want to find a polynomial pn(x) ∈ Pn such that pn(xi) = f(xi) for
i = 0, 1, . . . , n.

We define the divided differences (independant of order of points) using the recursive relation:

f [x0] := f(x0)

f [x0, x1, . . . , xm+1] :=
f [x1, . . . , xm+1]− f [x0, . . . , xm]

xm+1 − x0
Then the polynomial pn(x) can be written as:

pn(x) := f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, x1, . . . , xn]

n−1∏
k=0

(x− xk)

1.4 Matrix representation

The problem of interpolation can also be expressed as a system of linear equations and solved for
the coefficients. A matrix similar to the Vandermonde matrix is generated.

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

. . .
...

1 xn x2n · · · xnn

a0
a1
...
an

 =

y0
y1
...
yn

1.5 Error estimation

Take f ∈ Cn+1[a, b]. Let x0, x1, . . . , xn be n + 1 distinct points in [a, b]. Let p ∈ Pn such that
p(xi) = f(xi) for i = 1, 2, . . . , n. Then for all x ∈ [a, b], there exists ξ = ξ(x) ∈ (a, b) such that

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
k=0

(x− xk)

Taking maximum over x ∈ [a, b], we can see that our choice of interpolation points influences the
error significantly.

max
x∈[a,b]

|f(x)− p(x)| 6 1

(n+ 1)!
||f (n+1)|| max

x∈[a,b]

n∏
k=0

|(x− xk)|

This invokes the concept of Chebyshev’s interpolation points. These are essentially the vertical

projections of equally spaced points on a half-circle with center
a+ b

2
and radius

b− a
2

, given by

xk =
a+ b

2
+
b− a

2
cos

(
kπ

n

)

3

1.6 Piecewise interpolation

A function ϕ ∈ C[a, b] is a piecewise polynomial on [a, b] if

− there exist points {xi}ni=0 such that a = x0 < x1 < · · · < xn = b

− ϕ ∈ Pm is defined in each interval [xi−1, xi] but not necessarily on the entire domain

− m 6 n and m > 0

Piecewise interpolation involves building a function ϕ ∈ C[a, b] such that ϕ ∈ Pn on [xi−1, xi] and
ϕ(xi−1) = fi−1 and ψ(xi) = fi. The general algorithm for piecewise interpolation is:

− pick data points {(xi, fi) | i = 0, 1, . . . , n} such that a = x0 < x1 < · · · < xn = b

− build ϕ ∈ C[a, b] on each [xi−1, xi] such that ϕ ∈ Pm[xi−1, xi] and ϕ(xi−1) = fi−1

ϕ(xi) = f(xi) = fi for i = 0, 1, . . . , n→ (n+ 1) conditions

ϕ(x) =

a
(1)
0 + a

(1)
1 x+ · · ·+ a

(1)
m xm on [x0, x1]

a
(2)
0 + a

(2)
1 x+ · · ·+ a

(2)
m xm on [x1, x2]

...

a
(n)
0 + a

(n)
1 x+ · · ·+ a

(n)
m xm on [xn−1, xn]

 n(m+ 1) coefficients

− continuity of derivatives on interior points {xi | i = 1, 2, . . . , n− 1}

lim
h→0+

ϕ(xi − h) = lim
h→0+

ϕ(xi + h)

lim
h→0+

ϕ1(xi − h) = lim
h→0+

ϕ1(xi + h)

...

lim
h→0+

ϕm−1(xi − h) = lim
h→0+

ϕm−1(xi + h)

m(n− 1) more conditions

− still need (m− 1) more conditions

1.7 Linear interpolating splines

Take n + 1 points such that a = x0 < x1 < · · · < xn = b and a function f ∈ C[a, b]. The linear
interpolating spline sL(x) is

sL(x) =

(
xi − x
xi − xi−1

)
fi−1 +

(
x− xi−1
xi − xi−1

)
fi

This is nothing different from connecting each pair of consecutive points with a straight line. Clearly,
there will be some error in interpolation since we are approximating f by a set of polynomials in
P1. The error bound can be quantified as

||f − sL|| 6
h2

8
||f ′′|| where h = max

16i6n
hi = max

16i6n
(xi − xi−1)

The proof relies on the error equation introduced in Section 1.5. Substitute n = 1 and note how
max |(x− xi−1)(x− xi)| = h2i /4 where hi = xi − xi−1. Finally take a maximum over all the i′s.

4

1.8 Cubic splines

This is another case of spline interpolation where s ∈ C2[x0, xn] such that s ∈ P3 on each [xi, xi+1].

− interpolation conditions:

function value→
{
si(xi) = fi for i = 0, 1, . . . , n− 1
sn−1(xn) = fn

continuity of s→ si(xi+1) = si+1(xi+1) for i = 0, 1, . . . , n− 2

continuity of s′ → s′i(xi+1) = s′i+1(xi+1) for i = 0, 1, . . . , n− 2

continuity of s′′ → s′′i (xi+1) = s′′i+1(xi+1) for i = 0, 1, . . . , n− 2

− take polynomials of the form si(x) = ai(x−xi)3 +bi(x−xi)2 +ci(x−xi)+di for x ∈ [xi, xi+1]
and i = 0, 1, . . . , n− 1

− 4n coefficients & 4n− 2 conditions, need 2 more conditions → s′′0(x0) = s′′n−1(xn) = 0

Instead of solving a 4n× 4n matrix, we can make our life a little easier. Take equally spaced knots
h = |xi+1 − xi| for i = 0, 1, . . . , n− 1. Using the general form for si(x), we get

si(xi) = fi =⇒ di = fi for i = 0, 1, . . . , n− 1

We further define new variables as σi = s′′(xi) for i = 0, 1, . . . , n. We already know σ0 = σn = 0,
thus we have n− 1 unknown quantities. We have

s′′i (x) = 6ai(x− xi) + 2bi =⇒ σi = s′′i (xi) = 2bi =⇒ bi =
σi
2

(1)

Using the condition that s′′i (xi+1) = s′′i+1(xi+1), we have

6ai(xi+1 − xi) + 2bi = σi+1 =⇒ ai =
σi+1 − σi

6h
(2)

Next, we evaluate si(x) at x = xi+1 to get

fi+1 = si(xi+1) = aih
3 + bih

2 + cih+ di =⇒ ci =
fi+1 − fi

h
− h

6
(2σi + σi+1) (3)

Finally using the continuity of s′ i.e. s′i(xi+1) = s′i+1(xi+1), we get

s′i(x) = 3ai(x− xi)2 + 2bi(x− xi) + ci
s′i+1(x) = 3ai+1(x− xi)2 + 2bi+1(x− xi) + ci+1

}
=⇒ 3aih

2 + 2bih+ ci = ci+1

A little bit of careful manipulation using equations (1), (2) and (3) yields us the recursive relation
for i = 1, . . . , n− 1:

σi−1 + 4σi + σi+1 =
6

h2
(fi−1 − 2fi + fi+1)

σ0 + 4σ1 + σ2 =
6

h2
(f0 − 2f1 + f2)

σ1 + 4σ2 + σ3 =
6

h2
(f1 − 2f2 + f3)

...

σn−2 + 4σn−1 + σn =
6

h2
(fn−2 − 2fn−1 + fn)

5

This system of equations can be expressed as a matrix equation which is more convenient to solve:

4 1 0 · · · 0 0 0
1 4 1 · · · 0 0 0
0 1 4 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 4 1 0
0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 4

σ1
σ2
σ3
...

σn−3
σn−2
σn−1

=

6

h2

f0 − 2f1 + f2
f1 − 2f2 + f3
f2 − 2f3 + f4

...
fn−4 − 2fn−3 + fn−2
fn−3 − 2fn−2 + fn−1
fn−2 − 2fn−1 + fn

As with linear splines, there is also an error bound associated with cubic splines. This is given by

||f − s|| 6 Ch4||f (iv)|| where h = max
16i6n

hi = max
16i6n

(xi − xi−1) and C = constant

2 Numerical Integration

Given a real function f , we want to compute the integral

∫ b

a
f(x)dx. While it might seem straight-

forward, finding an antiderivative is not always easy. Hence, we resort to approximating it.

2.1 Newton-Cotes formula

Let f : [a, b] → R and p ∈ Pn be the interpolating polynomial. Define the quadrature points as

a = x0 < · · · < xn = b. Then

∫ b

a
f(x)dx can be approximated as

∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx =⇒

∫ b

a
f(x)dx ≈

∫ b

a

n∑
i=0

f(xi)Li(x)dx =

n∑
i=0

f(xi)

∫ b

a
Li(x)dx

Assume equally spaced intervals such that xi = a + ih. Further let x = a + th for t ∈ [0, n]. We
can then express the lagrange polynomials in terms of t.

Li(x) =
n∏

k=0,k 6=i

(x− xk)
(xi − xk)

=
n∏

k=0,k 6=i

(t− k)

(i− k)
= ϕi(t) =⇒

∫ b

a
Li(x)dx = h

∫ n

0
ϕi(t)dt

Defining the quadrature weights as wi =

∫ n

0
ϕi(t)dt for i = 0, . . . , n, we get

∫ b

a
f(x)dx ≈ h

n∑
i=0

wif(xi)

Note: The weights wi are dependent only on n and are independent of f, a, b and h. Further, all

the wi’s are symmetric i.e. wk = wn−k. Finally, all the weights add up to n i.e.
n∑
i=0

wi = n.

6

2.2 Special cases of the Newton-Cotes formula

Let If be the desired integral and Ip =

∫ b

a
p(x)dx be the approximated integral. We can substitute

values of n in the Newton-Cotes formula to get the following cases:

1. Trapezium rule (n = 1): Ip1 =
h

2
(f(a) + f(b))

2. Simpson’s
1

3
rule (n = 2): Ip2 =

h

3
(f(a) + 4f(a+ h) + f(b))

3. Simpson’s
3

8
rule (n = 3): Ip3 =

3h

8
(f(a) + 3f(a+ h) + 3f(a+ 2h) + f(b))

4. Milne’s rule (n = 4): Ip4 =
h

45
(14f(a) + 64f(a+ h) + 24f(a+ 2h) + 64f(a+ 3h) + 14f(b))

2.3 Error in the Newton-Cotes formula

Recall the error equation from Section 1.5. We use it to find the error in the Newton-Cotes formula
as follows:

|If − Ipn | =
∣∣∣∣∫ b

a
(f(x)− pn(x))dx

∣∣∣∣ 6 ∫ b

a
|f(x)− pn(x)| dx

∴ |If − Ipn | 6
[

1

(n+ 1)!
max
η∈[a,b]

|f (n+1)(η)|
] ∫ b

a

∣∣∣∣∣
n∏
i=0

(x− xi)

∣∣∣∣∣ dx
=

1

(n+ 1)!
||f (n+1)||

∫ b

a

n∏
i=0

| x− xi | dx

− Trapezium rule: |If − Ip1 | 6
1

12
|| f ′′ || (b− a)3

− Simpson’s rule: |If − Ip2 | 6
1

192
|| f ′′′ || (b− a)4

As we increase n, some of the weights take negative values. As a result, the error does not converge
to zero with n.

2.4 Gaussian quadrature

In order for the error to converge to 0, we must ensure that the weights are all positive. We define
the Gaussian quadrature of order n as follows:

Gn(f) =
n∑
i=0

Wif(xi) where Wi =

∫ b

a
[Li(x)]2dx =

∫ b

a

n∏
k=0,k 6=i

(
x− xk
xi − xk

)2

The quadrature points are not equally spaced, and are roots of certain polynomials.

lim
n→∞

|Gn(f)− If | = 0

7

2.5 Composite rules

This is very similar to spline interpolation, where we interpolated f by a piecewise cubic over each
sub-interval. Here, we divide [a, b] into m sub-intervals of equal length and apply Newton-Cotes on
each set of quadrature points.

8

	Interpolation Theory
	Numerical Integration

