MA 214 - Problem Set 1 Solutions Om Prabhu

(1) We have the points (0,0), (0.5, y), (1,3), (2,2). We also know that the coefficient of x^3 in the interpolation polynomial $p_3(x)$ is 6. Using divided differences, the coefficient of x^3 is equal to $f[x_0, x_1, x_2, x_3]$. We solve for y as follows:

$$f[x_0] := f(x_0) = 0$$

$$\therefore f[x_0, x_1] := \frac{f(x_1) - f(x_0)}{x_1 - x_0} = 2y$$

$$f[x_1, x_2] := \frac{f(x_2) - f(x_1)}{x_2 - x_1} = 6 - 2y$$

$$f[x_2, x_3] := \frac{f(x_3) - f(x_2)}{x_3 - x_2} = -1$$

$$\therefore f[x_0, x_1, x_2] := \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = 6 - 4y$$

$$f[x_1, x_2, x_3] := \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{4y - 14}{3}$$

$$\therefore f[x_0, x_1, x_2, x_3] := \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{16y - 32}{6}$$

Equating this expression to the coefficient of x^3 , we get the value for y = 4.25.

(2) Since we have only 2 points $x_0 = -1, x_1 = 1$, our interpolation polynomial $p_1(x)$ will be a straight line. Since there is no information about the function values at these points, p_1 will be in terms of $y_0 = f(x_0)$ and $y_1 = f(x_1)$:

$$p_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$
$$p_1(x) = y_0 + \frac{y_1 - y_0}{2} (x + 1)$$
$$\therefore p_1(x) = \frac{y_1 + y_0}{2} + \left(\frac{y_1 - y_0}{2}\right) x$$

In order to get the required inequality, we use the error equation as follows:

$$\max_{x \in [a,b]} |f(x) - p(x)| \leq \frac{1}{(n+1)!} ||f^{(n+1)}|| \max_{x \in [a,b]} \prod_{k=0}^{n} (x - x_k)$$

$$\therefore \max_{x \in [-1,1]} |f(x) - p_1(x)| \leq \frac{1}{2} ||f''|| \max_{x \in [-1,-1]} \prod_{k=0}^{1} (x - x_k)$$

$$\therefore \max_{x \in [-1,1]} |f(x) - p_1(x)| \leq \frac{1}{2} \max_{x \in [-1,1]} |f''(x)| \max_{x \in [-1,-1]} (x^2 - 1)$$

We observe that $\max_{x \in [-1,-1]} (x^2 - 1)$ takes the value of 1 (namely at x = 0), which gives us the desired inequality.

(3) We have the function $f(x) = \sqrt{x - x^2}$ and the points $x_0 = 0, x_1 = a, x_2 = 1$. We can solve for $p_2(x)$ using the Lagrange interpolation formula as follows:

$$L_0^2(x) = \frac{(x-1)(x-a)}{(0-a)(0-1)} = \frac{x^2 - (a+1)x + a}{a}$$
$$L_1^2(x) = \frac{(x-1)(x-0)}{(a-0)(a-1)} = \frac{x^2 - x}{a^2 - a}$$
$$L_2^2(x) = \frac{(x-0)(x-a)}{(1-a)(1-0)} = \frac{x^2 - ax}{1-a}$$
$$\therefore p_2(x) = 0\left(\frac{x^2 - (a+1)x + a}{a}\right) + \sqrt{a-a^2}\left(\frac{x^2 - x}{a^2 - a}\right) + 0\left(\frac{x^2 - ax}{1-a}\right)$$
$$= -\left(\frac{x^2 - x}{\sqrt{a-a^2}}\right)$$

Thus the required value of a is

- (4) We can prove the result by simply substituting values of i and taking 3 cases as follows:
 - i) for i = 0:

$$p_{n+1}(x_0) = \frac{(x_0 - x_0)r_n(x_0) - (x_0 - x_{n+1})q_n(x_0)}{x_{n+1} - x_0} = \frac{0 + (x_0 - x_{n+1})0}{x_{n+1} - x_0} = 0$$

ii) for i = 1, 2, ..., n:

$$p_{n+1}(x_i) = \frac{(x_i - x_0)r_n(x_i) - (x_i - x_{n+1})q_n(x_i)}{x_{n+1} - x_0} = \frac{(x_i - x_0)0 + (x_i - x_{n+1})0}{x_{n+1} - x_0} = 0$$

iii) for i = n + 1:

$$p_{n+1}(x_{n+1}) = \frac{(x_{n+1} - x_0)r_n(x_{n+1}) - (x_{n+1} - x_{n+1})q_n(x_{n+1})}{x_{n+1} - x_0} = \frac{(x_{n+1} - x_0)0 + 0}{x_{n+1} - x_0} = 0$$

By uniqueness theorem, $p_{n+1}(x)$ is the only polynomial of degree n+1 interpolating on the given points.

(5) We are given the interpolation points $x_0 = 0, x_1 = 0.4, x_2 = 0.7$ and the divided differences as $f[x_2] = 6, f[x_1, x_2] = 10, f[x_0, x_1, x_2] = \frac{50}{7}$. The rest of the values can found as follows:

$$f[x_0, x_1] = f[x_1, x_2] - f[x_0, x_1, x_2](x_2 - x_0)$$

= 10 - $\left(\frac{50}{7}\right)$ 0.7 = 5
 $f[x_1] = f[x_2] - f[x_1, x_2](x_2 - x_1)$
= 6 - 10(0.7 - 0.4) = 3
 $f[x_0] = f[x_1] - f[x_0, x_1](x_1 - x_0)$
= 3 - 5(0.4) = 1

(6) Using the given data, we can calculate the divided differences as follows (intermediate calculations have been skipped):

$$f[x_0] = f(x_0) = 1$$

$$\therefore f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = 3$$

$$\therefore f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = 2$$

$$\therefore f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = -1$$

$$\therefore f[x_0, x_1, x_2, x_3, x_4] = 0$$

$$\therefore f[x_0, x_1, x_2, x_3, x_4, x_5] = 0$$

Hence p(x) = 1 + 3(x+2) + 2(x+2)(x+1) - x(x+2)(x+1).

(7) We have $f \in C^n[a, b]$ and n + 1 distinct points x_0, x_1, \ldots, x_n in [a, b]. Using the divided differences method, the interpolation polynomial can be written as

$$p(x) := f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n] \prod_{k=0}^{n-1} (x - x_k)$$

Since $f(x_i) = p(x_i)$ for i = 0, 1, ..., n, thus the function f(x) - p(x) has n + 1 distinct roots. Thus by Rolle's theorem, $f^{(n)}(x) - p^{(n)}(x)$ has exactly one root in [a, b]. Let this root occur at $x = \delta$. Thus,

$$f^{(n)}(\delta) - p^{(n)}(\delta) = 0$$

Now, note that the n^{th} order derivative of p is identically $n!f[x_0, x_1, \ldots, x_n]$.

(8) The solution is similar to that of question 7 above.