
MA 214 - Problem Set 1 Solutions
Om Prabhu

(1) We have the points (0, 0), (0.5, y), (1, 3), (2, 2). We also know that the coefficient of x3 in the

interpolation polynomial p3(x) is 6. Using divided differences, the coefficient of x3 is equal

to f [x0, x1, x2, x3]. We solve for y as follows:

f [x0] := f(x0) = 0

∴ f [x0, x1] :=
f(x1)− f(x0)

x1 − x0
= 2y

f [x1, x2] :=
f(x2)− f(x1)

x2 − x1
= 6− 2y

f [x2, x3] :=
f(x3)− f(x2)

x3 − x2
= −1

∴ f [x0, x1, x2] :=
f [x1, x2]− f [x0, x1]

x2 − x0
= 6− 4y

f [x1, x2, x3] :=
f [x2, x3]− f [x1, x2]

x3 − x1
=

4y − 14

3

∴ f [x0, x1, x2, x3] :=
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
=

16y − 32

6

Equating this expression to the coefficient of x3, we get the value for y = 4.25. �

(2) Since we have only 2 points x0 = −1, x1 = 1, our interpolation polynomial p1(x) will be a

straight line. Since there is no information about the function values at these points, p1 will

be in terms of y0 = f(x0) and y1 = f(x1):

p1(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0)

p1(x) = y0 +
y1 − y0

2
(x+ 1)

∴ p1(x) =
y1 + y0

2
+

(
y1 − y0

2

)
x

In order to get the required inequality, we use the error equation as follows:

max
x∈[a,b]

|f(x)− p(x)| 6 1

(n+ 1)!
||f (n+1)|| max

x∈[a,b]

n∏
k=0

(x− xk)

∴ max
x∈[−1,1]

|f(x)− p1(x)| 6 1

2
||f ′′|| max

x∈[−1,−1]

1∏
k=0

(x− xk)

∴ max
x∈[−1,1]

|f(x)− p1(x)| 6 1

2
max

x∈[−1,1]
|f ′′(x)| max

x∈[−1,−1]
(x2 − 1)

We observe that max
x∈[−1,−1]

(x2− 1) takes the value of 1 (namely at x = 0), which gives us the

desired inequality. �
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(3) We have the function f(x) =
√
x− x2 and the points x0 = 0, x1 = a, x2 = 1. We can solve

for p2(x) using the Lagrange interpolation formula as follows:

L2
0(x) =

(x− 1)(x− a)

(0− a)(0− 1)
=
x2 − (a+ 1)x+ a

a

L2
1(x) =

(x− 1)(x− 0)

(a− 0)(a− 1)
=
x2 − x
a2 − a

L2
2(x) =

(x− 0)(x− a)

(1− a)(1− 0)
=
x2 − ax
1− a

∴ p2(x) = 0

(
x2 − (a+ 1)x+ a

a

)
+
√
a− a2

(
x2 − x
a2 − a

)
+ 0

(
x2 − ax
1− a

)
= −

(
x2 − x√
a− a2

)
Thus the required value of a is �

(4) We can prove the result by simply substituting values of i and taking 3 cases as follows:

i) for i = 0:

pn+1(x0) =
(x0 − x0)rn(x0)− (x0 − xn+1)qn(x0)

xn+1 − x0
=

0 + (x0 − xn+1)0

xn+1 − x0
= 0

ii) for i = 1, 2, . . . , n:

pn+1(xi) =
(xi − x0)rn(xi)− (xi − xn+1)qn(xi)

xn+1 − x0
=

(xi − x0)0 + (xi − xn+1)0

xn+1 − x0
= 0

iii) for i = n+ 1:

pn+1(xn+1) =
(xn+1 − x0)rn(xn+1)− (xn+1 − xn+1)qn(xn+1)

xn+1 − x0
=

(xn+1 − x0)0 + 0

xn+1 − x0
= 0

By uniqueness theorem, pn+1(x) is the only polynomial of degree n+ 1 interpolating on the

given points. �

(5) We are given the interpolation points x0 = 0, x1 = 0.4, x2 = 0.7 and the divided differences

as f [x2] = 6, f [x1, x2] = 10, f [x0, x1, x2] = 50
7 . The rest of the values can found as follows:

f [x0, x1] = f [x1, x2]− f [x0, x1, x2](x2 − x0)

= 10−
(

50

7

)
0.7 = 5

f [x1] = f [x2]− f [x1, x2](x2 − x1)
= 6− 10(0.7− 0.4) = 3

f [x0] = f [x1]− f [x0, x1](x1 − x0)
= 3− 5(0.4) = 1

. �
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(6) Using the given data, we can calculate the divided differences as follows (intermediate cal-

culations have been skipped):

f [x0] = f(x0) = 1

∴ f [x0, x1] =
f(x1)− f(x0)

x1 − x0
= 3

∴ f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
= 2

∴ f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
= −1

∴ f [x0, x1, x2, x3, x4] = 0

∴ f [x0, x1, x2, x3, x4, x5] = 0

Hence p(x) = 1 + 3(x+ 2) + 2(x+ 2)(x+ 1)− x(x+ 2)(x+ 1). �

(7) We have f ∈ Cn[a, b] and n + 1 distinct points x0, x1, . . . , xn in [a, b]. Using the divided

differences method, the interpolation polynomial can be written as

p(x) := f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, x1, . . . , xn]

n−1∏
k=0

(x− xk)

Since f(xi) = p(xi) for i = 0, 1, . . . , n, thus the function f(x)−p(x) has n+ 1 distinct roots.

Thus by Rolle’s theorem, f (n)(x)− p(n)(x) has exactly one root in [a, b]. Let this root occur

at x = δ. Thus,

f (n)(δ)− p(n)(δ) = 0

Now, note that the nth order derivative of p is identically n!f [x0, x1, . . . , xn]. �

(8) The solution is similar to that of question 7 above. �
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