MA 214 - Problem Set 1 Solutions
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(1) We have the points (0,0), (0.5,y), (1,3), (2,2). We also know that the coefficient of z* in the
interpolation polynomial p3(x) is 6. Using divided differences, the coefficient of 22 is equal

to flzo, z1,z2,z3]. We solve for y as follows:
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Equating this expression to the coefficient of 23, we get the value for y = 4.25. |
(2) Since we have only 2 points 9 = —1, 21 = 1, our interpolation polynomial p;(z) will be a

straight line. Since there is no information about the function values at these points, p; will
be in terms of yo = f(x0) and y; = f(z1):

f(z1) — f(20)

pi(z) = f(xo) + PR (z — o)
p@) =g+ 2 L@+ 1)
'_.pl(x):yl;ryo+<y12yo>x

In order to get the required inequality, we use the error equation as follows:
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desired inequality.
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max (z° — 1) takes the value of 1 (namely at z = 0), which gives us the



(3) We have the function f(z) = v/& — 22 and the points xg = 0,27 = a, 22 = 1. We can solve
for po(x) using the Lagrange interpolation formula as follows:
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Thus the required value of a is ]

(4) We can prove the result by simply substituting values of ¢ and taking 3 cases as follows:
i) for i = 0:
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ii) fori=1,2,...,n:
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By uniqueness theorem, p,41(z) is the only polynomial of degree n + 1 interpolating on the
given points. |

(5) We are given the interpolation points xo = 0,21 = 0.4, 29 = 0.7 and the divided differences
as flxa] = 6, fla1,z2] = 10, fzo, x1, 22] = 52. The rest of the values can found as follows:
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(6) Using the given data, we can calculate the divided differences as follows (intermediate cal-

culations have been skipped):
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Hence p(z) =1+3(z+2)+2(x + 2)(z + 1) — z(x + 2)(z + 1). [ ]

(7) We have f € C"[a,b] and n + 1 distinct points xg, z1,...,x, in [a,b]. Using the divided
differences method, the interpolation polynomial can be written as
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Since f(z;) = p(x;) for i = 0,1,...,n, thus the function f(z)— p(x) has n+ 1 distinct roots.
Thus by Rolle’s theorem, f (x) — p(®) () has exactly one root in [a,b]. Let this root occur
at x = 9. Thus,
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Now, note that the n* order derivative of p is identically n!f[zo, z1,...,zy). [ |

(8) The solution is similar to that of question 7 above. [ |



