MA 214 - Problem Set 2 Solutions Om Prabhu

(1) Assume that xp(x-1) = (x+1)p(x) is true. Take a function f(x) = (x+1)p(x). Then for some real α , we have $f(x-1) = f(x) \implies \cdots = f(-1) = f(0) = f(1) = \cdots = \alpha$ i.e. $f(x) - \alpha$ has infinitely many roots.

Define $g(x) = f(x) - \alpha$. Thus g has infinitely many zeroes. This is a contradiction to our assumption, because no polynomial of finite degree can have infinitely many roots. Therefore, g must identically be zero. We get $p(x) = \frac{\alpha}{x+1}$, which can be a polynomial only if $\alpha = 0$. Thus p is identically zero.

(2) We can directly compute all these values as follows:

$$d_{1} = \max_{x \in [-\pi,\pi]} |\cos x - \sin x| = \sqrt{2}$$

$$d_{2} = \max_{x \in [-\pi,\pi]} |\cos^{2} x - \sin^{2} x| = \max_{x \in [-\pi,\pi]} |1 - 2\sin^{2} x| = 1$$

$$d_{3} = \max_{x \in [-\pi,\pi]} |\cos^{3} x - \sin^{3} x|$$

$$= \max_{x \in [-\pi,\pi]} |\cos x - \sin x| \max_{x \in [-\pi,\pi]} |1 - \sin x \cos x|$$

$$= \max_{x \in [-\pi,\pi]} |\sqrt{2} \cos \left(x + \frac{\pi}{2}\right)| \max_{x \in [-\pi,\pi]} |1 - \frac{\sin 2x}{2}| = 1$$

Thus $d_1 > d_2 = d_3$.

(3)
$$\mathbf{I} \to \begin{cases} \text{for } a_k x^k \to k \text{ multiplications, } \therefore \text{ for } k = 0, 1, \dots, n \implies \text{total } \frac{n(n+1)}{2} \\ n \text{ additions} \end{cases}$$

 $\mathbf{II} \to \begin{cases} \text{for } a_k x^k \to 2 \text{ multiplications for } k = 2, \dots, n \text{ and } 1 \text{ for } a_1 x \implies \text{total } 2n-1 \\ n \text{ additions} \end{cases}$

III \rightarrow 1 addition and multiplication in each bracket, $\therefore n$ additions and multiplications

(4) We have 3 intervals and want to interpolate on them using quadratic splines. Define the piecewise quadratic as:

$$\varphi = \begin{cases} \varphi_1 = a_0^{(1)} + a_1^{(1)}x + a_2^{(1)}x^2 \text{ on } [-1,0] \\ \varphi_2 = a_0^{(2)} + a_1^{(2)}x + a_2^{(2)}x^2 \text{ on } [0,1] \\ \varphi_3 = a_0^{(3)} + a_1^{(3)}x + a_2^{(3)}x^2 \text{ on } [1,2] \end{cases}$$

Using boundary conditions on φ , we get $a_0^{(1)} - a_1^{(1)} + a_2^{(1)} = 1$ and $a_0^{(3)} + 2a_1^{(3)} + 4a_2^{(3)} = 8$. Using the continuity of φ at interior points x = 0 and x = 1, we get

$$\varphi_1(0) = \varphi_2(0) = 0 \implies a_0^{(1)} = a_0^{(2)} = 0$$

$$\varphi_2(1) = \varphi_3(1) \implies a_0^{(2)} + a_1^{(2)} + a_2^{(2)} = a_0^{(3)} + a_1^{(3)} + a_2^{(3)} = 1$$

Finally, we use the condition of continuity of the first derivative at interior points:

$$\varphi_1'(0) = \varphi_2'(0) \implies a_1^{(1)} = a_1^{(2)}$$
$$\varphi_2'(1) = \varphi_3'(1) \implies a_1^{(2)} + 2a_2^{(2)} = a_1^{(3)} + 2a_2^{(3)}$$

The last condition is given to us as $a_2^{(3)} = 0$. We can write this in form of the following matrix equation:

Γ1	-1	1	0	0	0	0	0	0]	$\begin{bmatrix} a_0^{(1)} \\ a_0^{(1)} \end{bmatrix}$		[1]	1
0	0	0	0	0	0	1	2	4	$a_{1}^{(1)}$		8	
1	0	0	0	0	0	0	0	0	$a_{2}^{(1)}$		0	
0	0	0	1	0	0	0	0	0	$a_0^{(2)}$		0	
0	0	0	1	1	1	0	0	0	$a_1^{(2)}$	=	1	
0	0	0	0	0	0	1	1	1	$a_{2}^{(2)}$		1	
0	1	0	0	-1	0	0	0	0	$a_{0}^{(3)}$		0	
0	0	0	0	1	2	0	-1	-2	$a_{1}^{(3)}$		0	
0	0	0	0	0	0	0	0	1	$\begin{bmatrix} a_1^{(3)} \\ a_2^{(3)} \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$	
									L ^a 2 _			

(5) (a) True

- (b) Use the binomial formula
- (c) Keeping in mind that $B_{n-1,-1}(x) = 0$,

$$\sum_{k=0}^{n} \frac{k}{n} B_{n,k}(x) = \sum_{k=0}^{n} \frac{(n-1)!}{(n-k)!(k-1)!} x^{k} (1-x^{k}) = x \sum_{k=0}^{n} B_{n-1,k-1}(x) = x$$

(d) We expand tha given expression as follows:

$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} B_{n,k}(x) = \sum_{k=0}^{n} \frac{k^{2}}{n^{2}} B_{n,k}(x) - 2x \sum_{k=0}^{n} \frac{k}{n} B_{n,k}(x) + x^{2} \sum_{k=0}^{n} B_{n,k}(x)$$

$$= \sum_{k=0}^{n} \frac{k^{2}}{n^{2}} \binom{n}{k} x^{k} (1 - x)^{n-k} - x^{2}$$

$$= \sum_{k=0}^{n} \frac{k}{n} \binom{n-1}{k-1} x^{k} (1 - x)^{n-k} - x^{2}$$

$$= \sum_{k=0}^{n} \frac{1}{n} \left[(k-1) \binom{n-1}{k-1} + \binom{n-1}{k-1} \right] x^{k} (1 - x)^{n-k} - x^{2}$$

$$= \sum_{k=0}^{n} \frac{1}{n} \left[(n-1) \binom{n-2}{k-2} + \binom{n-1}{k-1} \right] x^{k} (1 - x)^{n-k} - x^{2}$$

$$= \frac{(n-1)x^{2} + x}{n} - x^{2} = \frac{x(1-x)}{n}$$

(e) We have
$$B_n(f) - f = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_{n,k}(x) - f(x)$$
. We can write $f(x) = \sum_{k=0}^n B_{n,k}(x)f(x)$.
 $\therefore B_n(f) - f = \sum_{k=0}^n \left(f\left(\frac{k}{n}\right) - f(x)\right) B_{n,k}(x)$
 $\therefore |B_n(f) - f| \leq \sum_{k=0}^n \left|f\left(\frac{k}{n}\right) - f(x)\right| B_{n,k}(x)$

We now make use of the information that for any given $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(y)| < \frac{\varepsilon}{2}$ whenever $|x - y| < \delta$.

$$\sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x) = \sum_{\substack{\left|\frac{k}{n} - x\right| < \delta}} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x) + \sum_{\substack{\left|\frac{k}{n} - x\right| \ge \delta}} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x)$$

$$S_1 = \sum_{\left|\frac{k}{n} - x\right| < \delta} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x) \leqslant \frac{\varepsilon}{2} \sum_{\left|\frac{k}{n} - x\right| < \delta} B_{n,k}(x) \leqslant \frac{\varepsilon}{2}$$

The sum S_2 is a bit more tricky. We use the identity $|a(x) - b(x)| \leq ||a(x)|| + ||b(x)||$.

$$S_{2} = \sum_{\left|\frac{k}{n}-x\right| \ge \delta} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x)$$

$$\leq 2||f|| \sum_{\left|\frac{k}{n}-x\right| \ge \delta} B_{n,k}(x)$$

$$\leq 2||f|| \sum_{\left|\frac{k}{n}-x\right| \ge \delta} \frac{\left|\frac{k}{n}-x\right|^{2}}{\left|\frac{k}{n}-x\right|^{2}} B_{n,k}(x)$$

$$\leq \frac{2||f||}{\delta^{2}} \sum_{\left|\frac{k}{n}-x\right| \ge \delta} \left|\frac{k}{n}-x\right|^{2} B_{n,k}(x)$$

$$\leq \left(\frac{2||f||}{\delta^{2}}\right) \left(\frac{x(1-x)}{n}\right)$$

Note that $x(1-x) \leq \frac{1}{4}$ for $x \in [0,1]$. Thus we have $S_2 \leq \frac{||f||}{2\delta^2 n}$. The only part of the solution now remaining is to pick n such that $n > \frac{||f||}{\delta^2 \varepsilon}$.

(6) We are given a polynomial $p(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + x^n$ where $a_i \in \mathbb{Z}$. We are also given 4 integers $\alpha \neq \beta \neq \gamma \neq \delta$ such that $p(\alpha) = p(\beta) = p(\gamma) = p(\delta) = 7$. Thus we can rewrite p as

$$p(x) = 7 + (x - \alpha)(x - \beta)(x - \gamma)(x - \delta)q(x)$$

Substituting p(s) = 10 gives us $(s - \alpha)(s - \beta)(s - \gamma)(s - \delta)q(s) = 3$. Now note that since q(x) has integer coefficients, q(s) must take an integer value. Given distinct $\alpha, \beta, \gamma, \delta$, we must have distinct $(s - \alpha), (s - \beta), (s - \gamma), (s - \delta)$. Since 3 is a prime number, this is not possible (why? - take modulus of both sides).