
MA 214 - Problem Set 2 Solutions
Om Prabhu

(1) Assume that xp(x − 1) = (x + 1)p(x) is true. Take a function f(x) = (x + 1)p(x). Then

for some real α, we have f(x − 1) = f(x) =⇒ · · · = f(−1) = f(0) = f(1) = · · · = α i.e.

f(x)− α has infinitely many roots.

Define g(x) = f(x) − α. Thus g has infinitely many zeroes. This is a contradiction to

our assumption, because no polynomial of finite degree can have infinitely many roots.

Therefore, g must identically be zero. We get p(x) =
α

x+ 1
, which can be a polynomial only

if α = 0. Thus p is identically zero. �

(2) We can directly compute all these values as follows:

d1 = max
x∈[−π,π]

| cosx− sinx| =
√

2

d2 = max
x∈[−π,π]

| cos2 x− sin2 x| = max
x∈[−π,π]

|1− 2 sin2 x| = 1

d3 = max
x∈[−π,π]

| cos3 x− sin3 x|

= max
x∈[−π,π]

| cosx− sinx| max
x∈[−π,π]

|1− sinx cosx|

= max
x∈[−π,π]

|
√

2 cos
(
x+

π

2

)
| max
x∈[−π,π]

|1− sin 2x

2
| = 1

Thus d1 > d2 = d3. �

(3) I →

 for akx
k → k multiplications, ∴ for k = 0, 1, . . . , n =⇒ total

n(n+ 1)

2
n additions

II →

{
for akx

k → 2 multiplications for k = 2, . . . , n and 1 for a1x =⇒ total 2n− 1

n additions

III → 1 addition and multiplication in each bracket, ∴ n additions and multiplications �

(4) We have 3 intervals and want to interpolate on them using quadratic splines. Define the

piecewise quadratic as:

ϕ =


ϕ1 = a

(1)
0 + a

(1)
1 x+ a

(1)
2 x2 on [−1, 0]

ϕ2 = a
(2)
0 + a

(2)
1 x+ a

(2)
2 x2 on [0, 1]

ϕ3 = a
(3)
0 + a

(3)
1 x+ a

(3)
2 x2 on [1, 2]

Using boundary conditions on ϕ, we get a
(1)
0 − a

(1)
1 + a

(1)
2 = 1 and a

(3)
0 + 2a

(3)
1 + 4a

(3)
2 = 8.

Using the continuity of ϕ at interior points x = 0 and x = 1, we get

ϕ1(0) = ϕ2(0) = 0 =⇒ a
(1)
0 = a

(2)
0 = 0

ϕ2(1) = ϕ3(1) =⇒ a
(2)
0 + a

(2)
1 + a

(2)
2 = a

(3)
0 + a

(3)
1 + a

(3)
2 = 1

Finally, we use the condition of continuity of the first derivative at interior points:

ϕ′1(0) = ϕ′2(0) =⇒ a
(1)
1 = a

(2)
1

ϕ′2(1) = ϕ′3(1) =⇒ a
(2)
1 + 2a

(2)
2 = a

(3)
1 + 2a

(3)
2

1



The last condition is given to us as a
(3)
2 = 0. We can write this in form of the following

matrix equation:



1 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 2 4

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 1 0 0 −1 0 0 0 0

0 0 0 0 1 2 0 −1 −2

0 0 0 0 0 0 0 0 1





a
(1)
0

a
(1)
1

a
(1)
2

a
(2)
0

a
(2)
1

a
(2)
2

a
(3)
0

a
(3)
1

a
(3)
2


=



1

8

0

0

1

1

0

0

0


�

(5) (a) True

(b) Use the binomial formula

(c) Keeping in mind that Bn−1,−1(x) = 0,

n∑
k=0

k

n
Bn,k(x) =

n∑
k=0

(n− 1)!

(n− k)!(k − 1)!
xk(1− xk) = x

n∑
k=0

Bn−1,k−1(x) = x

(d) We expand tha given expression as follows:
n∑
k−0

(
k

n
− x
)2

Bn,k(x) =

n∑
k−0

k2

n2
Bn,k(x)− 2x

n∑
k−0

k

n
Bn,k(x) + x2

n∑
k−0

Bn,k(x)

=
n∑
k−0

k2

n2

(
n

k

)
xk(1− x)n−k − x2

=
n∑
k−0

k

n

(
n− 1

k − 1

)
xk(1− x)n−k − x2

=
n∑
k−0

1

n

[
(k − 1)

(
n− 1

k − 1

)
+

(
n− 1

k − 1

)]
xk(1− x)n−k − x2

=
n∑
k−0

1

n

[
(n− 1)

(
n− 2

k − 2

)
+

(
n− 1

k − 1

)]
xk(1− x)n−k − x2

=
(n− 1)x2 + x

n
− x2 =

x(1− x)

n

(e) We have Bn(f)−f =

n∑
k=0

f

(
k

n

)
Bn,k(x)−f(x). We can write f(x) =

n∑
k=0

Bn,k(x)f(x).

∴ Bn(f)− f =
n∑
k=0

(
f

(
k

n

)
− f(x)

)
Bn,k(x)

∴ |Bn(f)− f | 6
n∑
k=0

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣Bn,k(x)

2



We now make use of the information that for any given ε > 0, there exists a δ > 0 such

that |f(x)− f(y)| < ε

2
whenever |x− y| < δ.

n∑
k=0

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣Bn,k(x) =
∑
| kn−x|<δ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣Bn,k(x)

+
∑
| kn−x|>δ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣Bn,k(x)

S1 =
∑
| kn−x|<δ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣Bn,k(x) 6
ε

2

∑
| kn−x|<δ

Bn,k(x) 6
ε

2

The sum S2 is a bit more tricky. We use the identity |a(x)− b(x)| 6 ||a(x)||+ ||b(x)||.

S2 =
∑
| kn−x|>δ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣Bn,k(x)

6 2||f ||
∑
| kn−x|>δ

Bn,k(x)

6 2||f ||
∑
| kn−x|>δ

∣∣ k
n − x

∣∣2∣∣ k
n − x

∣∣2Bn,k(x)

6
2||f ||
δ2

∑
| kn−x|>δ

∣∣∣∣kn − x
∣∣∣∣2Bn,k(x)

6

(
2||f ||
δ2

)(
x(1− x)

n

)

Note that x(1− x) 6
1

4
for x ∈ [0, 1]. Thus we have S2 6

||f ||
2δ2n

. The only part of the

solution now remaining is to pick n such that n >
||f ||
δ2ε

. �

(6) We are given a polynomial p(x) = a0 + a1x + · · · + an−1x
n−1 + xn where ai ∈ Z. We are

also given 4 integers α 6= β 6= γ 6= δ such that p(α) = p(β) = p(γ) = p(δ) = 7. Thus we can

rewrite p as

p(x) = 7 + (x− α)(x− β)(x− γ)(x− δ)q(x)

Substituting p(s) = 10 gives us (s − α)(s − β)(s − γ)(s − δ)q(s) = 3. Now note that since

q(x) has integer coefficients, q(s) must take an integer value. Given distinct α, β, γ, δ, we

must have distinct (s − α), (s − β), (s − γ), (s − δ). Since 3 is a prime number, this is not

possible (why? - take modulus of both sides). �
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