MA 214 - Problem Set 2 Solutions Om Prabhu

(1) Assume that $xp(x-1) = (x+1)p(x)$ is true. Take a function $f(x) = (x+1)p(x)$. Then for some real α , we have $f(x-1) = f(x) \implies \cdots = f(-1) = f(0) = f(1) = \cdots = \alpha$ i.e. $f(x) - \alpha$ has infinitely many roots.

Define $q(x) = f(x) - \alpha$. Thus q has infinitely many zeroes. This is a contradiction to our assumption, because no polynomial of finite degree can have infinitely many roots. Therefore, g must identically be zero. We get $p(x) = \frac{\alpha}{x+1}$, which can be a polynomial only if $\alpha = 0$. Thus p is identically zero.

(2) We can directly compute all these values as follows:

$$
d_1 = \max_{x \in [-\pi,\pi]} |\cos x - \sin x| = \sqrt{2}
$$

\n
$$
d_2 = \max_{x \in [-\pi,\pi]} |\cos^2 x - \sin^2 x| = \max_{x \in [-\pi,\pi]} |1 - 2\sin^2 x| = 1
$$

\n
$$
d_3 = \max_{x \in [-\pi,\pi]} |\cos^3 x - \sin^3 x|
$$

\n
$$
= \max_{x \in [-\pi,\pi]} |\cos x - \sin x| \max_{x \in [-\pi,\pi]} |1 - \sin x \cos x|
$$

\n
$$
= \max_{x \in [-\pi,\pi]} |\sqrt{2}\cos\left(x + \frac{\pi}{2}\right)| \max_{x \in [-\pi,\pi]} |1 - \frac{\sin 2x}{2}| = 1
$$

Thus $d_1 > d_2 = d_3$.

(3)
$$
\mathbf{I} \rightarrow \begin{cases} \text{for } a_k x^k \rightarrow k \text{ multiplications, } \therefore \text{ for } k = 0, 1, \dots, n \implies \text{total } \frac{n(n+1)}{2} \\ n \text{ additions} \end{cases}
$$

\n $\mathbf{II} \rightarrow \begin{cases} \text{for } a_k x^k \rightarrow 2 \text{ multiplications for } k = 2, \dots, n \text{ and } 1 \text{ for } a_1 x \implies \text{total } 2n - 1 \\ n \text{ additions} \end{cases}$

III \rightarrow 1 addition and multiplication in each bracket, ∴ n additions and multiplications

(4) We have 3 intervals and want to interpolate on them using quadratic splines. Define the piecewise quadratic as:

$$
\varphi = \begin{cases} \n\varphi_1 = a_0^{(1)} + a_1^{(1)}x + a_2^{(1)}x^2 \text{ on } [-1, 0] \\
\varphi_2 = a_0^{(2)} + a_1^{(2)}x + a_2^{(2)}x^2 \text{ on } [0, 1] \\
\varphi_3 = a_0^{(3)} + a_1^{(3)}x + a_2^{(3)}x^2 \text{ on } [1, 2] \n\end{cases}
$$

Using boundary conditions on φ , we get $a_0^{(1)} - a_1^{(1)} + a_2^{(1)} = 1$ and $a_0^{(3)} + 2a_1^{(3)} + 4a_2^{(3)} = 8$. Using the continuity of φ at interior points $x = 0$ and $x = 1$, we get

$$
\varphi_1(0) = \varphi_2(0) = 0 \implies a_0^{(1)} = a_0^{(2)} = 0
$$

$$
\varphi_2(1) = \varphi_3(1) \implies a_0^{(2)} + a_1^{(2)} + a_2^{(2)} = a_0^{(3)} + a_1^{(3)} + a_2^{(3)} = 1
$$

Finally, we use the condition of continuity of the first derivative at interior points:

$$
\varphi'_1(0) = \varphi'_2(0) \implies a_1^{(1)} = a_1^{(2)}
$$

\n $\varphi'_2(1) = \varphi'_3(1) \implies a_1^{(2)} + 2a_2^{(2)} = a_1^{(3)} + 2a_2^{(3)}$

The last condition is given to us as $a_2^{(3)} = 0$. We can write this in form of the following matrix equation:

	$^{-1}$	$\mathbf 1$	0	0	$\boldsymbol{0}$	0			a_0		
θ		0	0	$\boldsymbol{0}$	$\boldsymbol{0}$	1	$\overline{2}$	4	a_1	8	
1		0	0	$\boldsymbol{0}$	$\boldsymbol{0}$	0	0	0	$a_{\hat{2}}$		
$\boldsymbol{0}$		0	1	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$^{\prime}2$ $a_{\rm 0}$	0	
$\boldsymbol{0}$		0	1	1	$\mathbf{1}$	$\boldsymbol{0}$	$\boldsymbol{0}$	0	$^{^{\prime}2}$. a_1		
$\boldsymbol{0}$	0	0	0	0	$\boldsymbol{0}$	$\mathbf{1}$	1	1	′2, a_2		
$\boldsymbol{0}$		0	0	-1	$\boldsymbol{0}$	$\boldsymbol{0}$	0	0	΄3 a_0		
$\boldsymbol{0}$	0	0	0	1	$\boldsymbol{2}$	$\boldsymbol{0}$		2	΄3 a_1	0	
		0	0	0	$\boldsymbol{0}$	$\boldsymbol{0}$	0		(3)		
									$a_{\dot 2}$		

(5) (a) True

- (b) Use the binomial formula
- (c) Keeping in mind that $B_{n-1,-1}(x) = 0$,

$$
\sum_{k=0}^{n} \frac{k}{n} B_{n,k}(x) = \sum_{k=0}^{n} \frac{(n-1)!}{(n-k)!(k-1)!} x^{k} (1-x^{k}) = x \sum_{k=0}^{n} B_{n-1,k-1}(x) = x
$$

 \blacksquare

(d) We expand tha given expression as follows:

$$
\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} B_{n,k}(x) = \sum_{k=0}^{n} \frac{k^{2}}{n^{2}} B_{n,k}(x) - 2x \sum_{k=0}^{n} \frac{k}{n} B_{n,k}(x) + x^{2} \sum_{k=0}^{n} B_{n,k}(x)
$$

$$
= \sum_{k=0}^{n} \frac{k^{2}}{n^{2}} {n \choose k} x^{k} (1-x)^{n-k} - x^{2}
$$

$$
= \sum_{k=0}^{n} \frac{k}{n} {n \choose k-1} x^{k} (1-x)^{n-k} - x^{2}
$$

$$
= \sum_{k=0}^{n} \frac{1}{n} \left[(k-1) {n-1 \choose k-1} + {n-1 \choose k-1} \right] x^{k} (1-x)^{n-k} - x^{2}
$$

$$
= \sum_{k=0}^{n} \frac{1}{n} \left[(n-1) {n-2 \choose k-2} + {n-1 \choose k-1} \right] x^{k} (1-x)^{n-k} - x^{2}
$$

$$
= \frac{(n-1)x^{2} + x}{n} - x^{2} = \frac{x(1-x)}{n}
$$

(e) We have
$$
B_n(f) - f = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_{n,k}(x) - f(x)
$$
. We can write $f(x) = \sum_{k=0}^n B_{n,k}(x) f(x)$.
\n
$$
\therefore B_n(f) - f = \sum_{k=0}^n \left(f\left(\frac{k}{n}\right) - f(x) \right) B_{n,k}(x)
$$
\n
$$
\therefore |B_n(f) - f| \leqslant \sum_{k=0}^n \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x)
$$

We now make use of the information that for any given $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(y)| < \frac{\varepsilon}{2}$ $\frac{3}{2}$ whenever $|x - y| < \delta$.

$$
\sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x) = \sum_{\left|\frac{k}{n} - x\right| < \delta} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x) + \sum_{\left|\frac{k}{n} - x\right| \ge \delta} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x)
$$

$$
S_1 = \sum_{\left|\frac{k}{n} - x\right| < \delta} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x) \leq \frac{\varepsilon}{2} \sum_{\left|\frac{k}{n} - x\right| < \delta} B_{n,k}(x) \leq \frac{\varepsilon}{2}
$$

The sum S_2 is a bit more tricky. We use the identity $|a(x) - b(x)| \leq ||a(x)|| + ||b(x)||$.

$$
S_2 = \sum_{\left|\frac{k}{n}-x\right| \geq \delta} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x)
$$

\n
$$
\leq 2||f|| \sum_{\left|\frac{k}{n}-x\right| \geq \delta} B_{n,k}(x)
$$

\n
$$
\leq 2||f|| \sum_{\left|\frac{k}{n}-x\right| \geq \delta} \frac{\left|\frac{k}{n}-x\right|^2}{\left|\frac{k}{n}-x\right|^2} B_{n,k}(x)
$$

\n
$$
\leq \frac{2||f||}{\delta^2} \sum_{\left|\frac{k}{n}-x\right| \geq \delta} \left| \frac{k}{n} - x \right|^2 B_{n,k}(x)
$$

\n
$$
\leq \left(\frac{2||f||}{\delta^2}\right) \left(\frac{x(1-x)}{n}\right)
$$

Note that $x(1-x) \leqslant \frac{1}{4}$ $\frac{1}{4}$ for $x \in [0,1]$. Thus we have $S_2 \leq \frac{||f||}{2\delta^2 n}$ $\frac{15}{2\delta^2 n}$. The only part of the solution now remaining is to pick n such that $n > \frac{||f||}{r^2}$ δ 2ε .

(6) We are given a polynomial $p(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + x^n$ where $a_i \in \mathbb{Z}$. We are also given 4 integers $\alpha \neq \beta \neq \gamma \neq \delta$ such that $p(\alpha) = p(\beta) = p(\gamma) = p(\delta) = 7$. Thus we can rewrite p as

$$
p(x) = 7 + (x - \alpha)(x - \beta)(x - \gamma)(x - \delta)q(x)
$$

Substituting $p(s) = 10$ gives us $(s - \alpha)(s - \beta)(s - \gamma)(s - \delta)q(s) = 3$. Now note that since $q(x)$ has integer coefficients, $q(s)$ must take an integer value. Given distinct $\alpha, \beta, \gamma, \delta$, we must have distinct $(s - \alpha)$, $(s - \beta)$, $(s - \gamma)$, $(s - \delta)$. Since 3 is a prime number, this is not possible (why? - take modulus of both sides).