ME 226 (Mechanical Measurements) - Homework 1

Name: Om Prabhu Roll Number: 19D170018

Honor Pledge: I have abided by the course honor code. I have neither received solutions from my peers nor shared my solutions with them. All the solutions in this document are my own work.

Input (MPa)	Increasing Output (MPa)	Decreasing Output (MPa)
0	0.25	0.2
10	10.56	10.6
20	21.65	21.75
30	32.21	32.65
40	43.65	43.98
50	52.3	52.73

(1) We have the data given as follows:

i) According to least squares method, we have the following equations:

$$m = \frac{1}{D} \left(N \sum_{k} x_{k} y_{k} - \sum_{k} x_{k} \sum_{k} y_{k} \right)$$

$$c = \frac{1}{D} \left(\sum_{k} x_{k}^{2} \sum_{k} y_{k} - \sum_{k} x_{k} \sum_{k} x_{k} y_{k} \right)$$
 and $D = N \sum_{k} x_{k}^{2} - \left(\sum_{k} x_{k} \right)^{2}$

The individual quantities can be calculated as shown below:

$$\sum_{k} x_{k} = 2(0 + 10 + 20 + 30 + 40 + 50) = 300$$

$$\sum_{k} x_{k}^{2} = 2(0 + 100 + 400 + 900 + 1600 + 2500) = 11000$$

$$\sum_{k} x_{k} y_{k} = 105.6 + 106 + 433 + 435 + 966.3 + 979.5 + 1746 + 1759.2 + 2615 + 2636.5$$

$$= 11786.1$$

$$\sum_{k} y_{k} = 0.25 + 0.2 + 10.56 + 10.6 + 21.65 + 21.75 + 32.21 + 32.65 + 43.65 + \dots$$

$$\dots 43.98 + 52.3 + 52.73 = 322.63$$

Thus we can find the value of D, m and c as follows:

$$D = 12(11000) - (300)^2 = 42000$$
$$\therefore m = \frac{12(11786.1) - (300)(322.63)}{42000} = 1.063$$
$$\therefore c = \frac{(11000)(322.63) - (300)(11786.1)}{42000} = 0.312$$

Thus the equation of best linear fit for the given data is y = 1.063x + 0.312

ii) First, we find the standard deviation of y:

$$\sigma_y^2 = \frac{1}{N-2} \sum_k (mx_k + c - y_k)^2$$

= $\frac{1}{10} \begin{bmatrix} 0.062^2 + 0.112^2 + 0.382^2 + 0.342^2 + (-0.078)^2 + (-0.178)^2 + \dots \\ (-0.008)^2 + (-0.448)^2 + (-0.818)^2 + (-1.148)^2 + 1.162^2 + 0.732^2 \end{bmatrix} = 0.4624$

Thus we get $\sigma_y = 0.68$.

Based on this, we can calculate the remaining standard deviations as follows:

$$\therefore \sigma_x^2 = \frac{\sigma_y^2}{m^2} = 0.4092 \implies \sigma_x = 0.64$$
$$\therefore \sigma_m^2 = \frac{N\sigma_y^2}{D} = 1.321 \times 10^{-4} \implies \sigma_m = 0.011$$
$$\therefore \sigma_c^2 = \frac{\sigma_y^2 \sum_k x_k^2}{D} = 0.1211 \implies \sigma_c = 0.35$$

iii) We have the output value y = 25.35 and want to find the true input value. Using the best linear fit equation obtained earlier:

$$y = 1.063x + 0.312$$

∴ $x = \frac{y - 0.312}{1.063}$
∴ $x = \frac{25.35 - 0.312}{1.063} = 23.55$

The uncertainty of the input value within $\pm 3\sigma$ limits is $3 \times 0.64 = 1.92$. Thus the final value of the input is $x = 23.55 \pm 1.92$ MPa.

(2) We have 15 sample values of L and D each and we know that surface area $A = \pi DL + \pi \frac{D^2}{2}$. We first calculate the value of surface area at each of the sample points:

$$\begin{split} A_1 &= \pi(20.4)(100.1) + \pi \frac{(20.4)^2}{2} = 7068.96\\ A_2 &= \pi(19.5)(99.9) + \pi \frac{(19.5)^2}{2} = 6717.275\\ A_3 &= \pi(20.1)(99.8) + \pi \frac{(20.1)^2}{2} = 6936.589\\ A_4 &= \pi(19.9)(100.2) + \pi \frac{(19.9)^2}{2} = 6886.324\\ A_5 &= \pi(20.1)(100.3) + \pi \frac{(20.1)^2}{2} = 6968.162\\ A_6 &= \pi(20.3)(99.8) + \pi \frac{(20.3)^2}{2} = 7011.988\\ A_7 &= \pi(20.2)(100) + \pi \frac{(20.2)^2}{2} = 6986.965\\ A_8 &= \pi(19.6)(100.4) + \pi \frac{(19.6)^2}{2} = 6785.589\\ A_9 &= \pi(19.7)(99.7) + \pi \frac{(19.7)^2}{2} = 6779.981\\ A_{10} &= \pi(19.8)(99.9) + \pi \frac{(19.8)^2}{2} = 6829.948\\ A_{11} &= \pi(20)(101) + \pi \frac{(20)^2}{2} = 6974.336\\ A_{12} &= \pi(19.2)(99) + \pi \frac{(19.2)^2}{2} = 6550.598\\ A_{13} &= \pi(19.4)(99.5) + \pi \frac{(19.4)^2}{2} = 6655.401\\ A_{14} &= \pi(20)(100.6) + \pi \frac{(20.4)^2}{2} = 7094.596 \end{split}$$

From the calculated data, the mean value \bar{A} is:

$$\bar{A} = \frac{\sum_{i=1}^{N} A_i}{N} = \frac{103195.915}{15} = 6879.728$$

From this data we can now calculate the sample variance as follows:

$$\sigma_A^2 = \sum_{i=1}^N \frac{(A_i - \bar{A})^2}{N - 1} = 24441.0175 \implies \sigma_A = 156.336$$

Thus the final value of the area within $\pm 3\sigma$ error limits is $A = 6879.728 \pm 469.008 \text{ mm}^2$.

(3) Before we employ the least squares method to solve this problem, we need to prove the expressions for it first. We know that the input-output relation for the data is $q_0 = aq_i + b$. For convenience, we can rewrite this as $y = ax_b$, where y represents the output and x represents the input. We can then define the error E as:

$$E = \sum_{i=1}^{N} (y_i - (ax_i + b))^2$$

For minimum error, we must have $\frac{\partial E}{\partial a} = 0$ and $\frac{\partial E}{\partial b} = 0$.

$$\frac{\partial E}{\partial a} = 0 \implies \sum_{i=1}^{N} 2(-x_i)(y_i - (ax_i + b)) = 0$$
$$\frac{\partial E}{\partial b} = 0 \implies \sum_{i=1}^{N} 2(y_i - (ax_i + b)) = 0$$

We can further simplify the above equations to get the following system of equations:

$$a\left(\sum_{i=1}^{N} x_i^2\right) + b\left(\sum_{i=1}^{N} x_i\right) = \left(\sum_{i=1}^{N} x_i y_i\right)$$
$$a\left(\sum_{i=1}^{N} x_i\right) + bN = \left(\sum_{i=1}^{N} y_i\right)$$

This system of linear equations can further be expressed in a matrix form as follows:

$$\left[\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} x_i\right] \begin{bmatrix}a\\b\end{bmatrix} = \begin{bmatrix}\sum_{i=1}^{N} x_i y_i\\\sum_{i=1}^{N} y_i\end{bmatrix}$$
$$\therefore \begin{bmatrix}a\\b\end{bmatrix} = \begin{bmatrix}\sum_{i=1}^{N} x_i y_i\\\sum_{i=1}^{N} x_i\end{bmatrix}^{-1} \begin{bmatrix}\sum_{i=1}^{N} x_i y_i\\\sum_{i=1}^{N} y_i\end{bmatrix} \implies \begin{bmatrix}a\\b\end{bmatrix} = \frac{1}{D} \begin{bmatrix}N & -\sum_{i=1}^{N} x_i\\-\sum_{i=1}^{N} x_i\end{bmatrix} \begin{bmatrix}\sum_{i=1}^{N} x_i y_i\\\sum_{i=1}^{N} y_i\end{bmatrix}$$
$$\sum_{i=1}^{N} y_i = \frac{1}{D} \begin{bmatrix}N & -\sum_{i=1}^{N} x_i\\-\sum_{i=1}^{N} x_i\end{bmatrix} \begin{bmatrix}\sum_{i=1}^{N} x_i y_i\\\sum_{i=1}^{N} y_i\end{bmatrix}$$

where the determinant $D = N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)$. Thus, the final expressions for a and b are:

$$a = \frac{1}{D} \left(N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \right)$$

$$b = \frac{1}{D} \left(\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i \right)$$

From the given data, we have $\sum_{i=1}^{N} x_i = 27$, $\sum_{i=1}^{N} x_i^2 = 179$, $\sum_{i=1}^{N} x_i y_i = 180.6$ and $\sum_{i=1}^{N} y_i = 27.35$.

Thus we can easily calculate the values of a, b, D as follows:

$$D = N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2 = 7(179) - (27)^2 = 524$$

$$\therefore a = \frac{1}{D} \left(N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \right) = \frac{1}{524} [7(180.6) - (27)(27.35)] = 1.003$$
$$\therefore b = \frac{1}{D} \left(\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i \right) = \frac{1}{524} [(179)(27.35) - (180.6)(27)] = 0.037$$

Thus, a = 1.003 and b = 0.037. The linear best fit expression for the following set of data is $q_o = 1.003q_i + 0.037$. To calculate the accuracy of these results, we first need to find σ_y .

$$\sigma_y^2 = \frac{1}{N-2} \sum_{i=1}^{N} (ax_i + b - y_i)^2$$

= $\frac{1}{5} [(-0.063)^2 + (-0.06)^2 + (-0.007)^2 + (0.146)^2 + (-0.051)^2 + (0.158)^2 + (-0.133)^2]$
= 0.0148

Thus we get $\sigma_y = 0.122$ and accuracy of measurement based on $\pm 3\sigma$ limits is ± 0.366 . Now to find the accuracy of the calculated values of a and b:

$$\sigma_a^2 = \frac{N\sigma_y^2}{D} = 1.977 \times 10^{-4} \implies \sigma_a = 0.014$$
$$\sigma_b^2 = \frac{\sigma_y^2 \sum_i x_i^2}{D} = 5.056 \times 10^{-3} \implies \sigma_b = 0.071$$

(4) We have the relation $\kappa = q \frac{\ln(r_0) - \ln(r_1)}{2\pi l(T_1 - T_0)}$. The root sum square error can be found as follows:

$$E_{RSS} = \sqrt{\left(\frac{\partial\kappa}{\partial q}\Delta q\right)^2 + \left(\frac{\partial\kappa}{\partial r_0}\Delta r_0\right)^2 + \left(\frac{\partial\kappa}{\partial r_1}\Delta r_1\right)^2 + \left(\frac{\partial\kappa}{\partial l}\Delta l\right)^2 + \left(\frac{\partial\kappa}{\partial T_1}\Delta T_1\right)^2 + \left(\frac{\partial\kappa}{\partial T_0}\Delta T_0\right)^2}$$

Let us first calculate the individual terms:

$$\begin{aligned} \frac{\partial \kappa}{\partial q} \Delta q &= \left(\frac{\ln(r_0) - \ln(r_1)}{2\pi l(T_1 - T_0)}\right) \Delta q = \frac{\ln 2}{2\pi (0.5)(30)} \times 1 = 7.35 \times 10^{-3} \text{ W/m/K} \\ \frac{\partial \kappa}{\partial r_0} \Delta r_0 &= \left(\frac{1}{r_0}\right) \frac{q}{2\pi l(T_1 - T_0)} \Delta r_0 = \frac{70}{2\pi (0.02)(0.5)(30)} \times 0.0005 = 18.57 \times 10^{-3} \text{ W/m/K} \\ \frac{\partial \kappa}{\partial r_1} \Delta r_1 &= -\left(\frac{1}{r_1}\right) \frac{q}{2\pi l(T_1 - T_0)} \Delta r_1 = -\frac{70}{2\pi (0.01)(0.5)(30)} \times 0.0005 = -37.13 \times 10^{-3} \text{ W/m/K} \\ \frac{\partial \kappa}{\partial l} \Delta l &= -q \left(\frac{\ln(r_0) - \ln(r_1)}{2\pi l^2 (T_1 - T_0)}\right) \Delta l = -\frac{70 \ln 2}{2\pi (0.5)^2 (30)} \times 0.01 = -10.29 \times 10^{-3} \text{ W/m/K} \\ \frac{\partial \kappa}{\partial T_1} \Delta T_1 &= -q \left(\frac{\ln(r_0) - \ln(r_1)}{2\pi l(T_1 - T_0)^2}\right) \Delta T_1 = -\frac{70 \ln 2}{2\pi (0.5)(30)^2} \times 1 = -17.15 \times 10^{-3} \text{ W/m/K} \\ \frac{\partial \kappa}{\partial T_0} \Delta T_0 &= q \left(\frac{\ln(r_0) - \ln(r_1)}{2\pi l(T_1 - T_0)^2}\right) \Delta T_0 = \frac{70 \ln 2}{2\pi (0.5)(30)^2} \times 1 = 17.15 \times 10^{-3} \text{ W/m/K} \end{aligned}$$

Thus we have, $E_{RSS} = \sqrt{(7.35)^2 + (18.57)^2 + (-37.13)^2 + (-10.29)^2 + (-17.15)^2 + (17.15)^2} \times 10^{-3}$ i.e. $E_{RSS} = 4.965 \times 10^{-2} \text{ W/m/K}$.

The maximum possible error in measurement of thermal conductivity is simply the absolute sum error.

$$E_{max} = \left| \frac{\partial \kappa}{\partial q} \Delta q \right| + \left| \frac{\partial \kappa}{\partial r_0} \Delta r_0 \right| + \left| \frac{\partial \kappa}{\partial r_1} \Delta r_1 \right| + \left| \frac{\partial \kappa}{\partial l} \Delta l \right| + \left| \frac{\partial \kappa}{\partial T_1} \Delta T_1 \right| + \left| \frac{\partial \kappa}{\partial T_0} \Delta T_0 \right|$$

Thus the maximum possible error is $E_{max} = 1.076 \times 10^{-1} \text{ W/m/K}$.

(5) We have the relation $F = \frac{\epsilon E b t^2}{3r(\sin \theta - \frac{2}{\pi})}$. We are also given that the root sum square limit of the load is 2.5 kN. We also know that

$$E_{RSS}^2 = \left(\frac{\partial\kappa}{\partial q}\Delta q\right)^2 + \left(\frac{\partial\kappa}{\partial r_0}\Delta r_0\right)^2 + \left(\frac{\partial\kappa}{\partial r_1}\Delta r_1\right)^2 + \left(\frac{\partial\kappa}{\partial l}\Delta l\right)^2 + \left(\frac{\partial\kappa}{\partial T_1}\Delta T_1\right)^2 + \left(\frac{\partial\kappa}{\partial T_0}\Delta T_0\right)^2$$

All of the variances are unknown to us. We ignore the error in E (given in the question). However, we can calculate the values of the derivatives:

$$\begin{aligned} \frac{\partial F}{\partial \epsilon} &= \frac{Ebt^2}{3r(\sin\theta - \frac{2}{\pi})} = \frac{(210 \times 10^9)(25 \times 10^{-3})(36 \times 10^{-6})}{3(75 \times 10^{-3})(\frac{1}{\sqrt{2}} - \frac{2}{\pi})} = 1.19 \times 10^7 \\ \frac{\partial F}{\partial b} &= \frac{\epsilon Et^2}{3r(\sin\theta - \frac{2}{\pi})} = \frac{(210 \times 10^9)(3400 \times 10^{-6})(36 \times 10^{-6})}{3(75 \times 10^{-3})(\frac{1}{\sqrt{2}} - \frac{2}{\pi})} = 1.62 \times 10^6 \\ \frac{\partial F}{\partial t} &= \frac{2\epsilon Ebt}{3r(\sin\theta - \frac{2}{\pi})} = \frac{2(3400 \times 10^{-6})(210 \times 10^9)(25 \times 10^{-3})(6 \times 10^{-3})}{3(75 \times 10^{-3})(\frac{1}{\sqrt{2}} - \frac{2}{\pi})} = 1.35 \times 10^7 \\ \frac{\partial F}{\partial r} &= -\frac{\epsilon Ebt^2}{3r^2(\sin\theta - \frac{2}{\pi})} = -\frac{(3400 \times 10^{-6})(210 \times 10^9)(25 \times 10^{-3})(36 \times 10^{-6})}{3(75 \times 10^{-3})^2(\frac{1}{\sqrt{2}} - \frac{2}{\pi})} = -5.41 \times 10^5 \\ \frac{\partial F}{\partial \theta} &= -\frac{\epsilon Ebt^2\cos\theta}{3r(\sin\theta - \frac{2}{\pi})^2} = -\frac{(3400 \times 10^{-6})(210 \times 10^9)(25 \times 10^{-3})(36 \times 10^{-6})(\frac{1}{\sqrt{2}})}{3(75 \times 10^{-3})(\frac{1}{\sqrt{2}} - \frac{2}{\pi})} = 4.07 \times 10^5 \end{aligned}$$

By method of equal effects, each of the quantities on RHS will be $\frac{2500^2}{5} = 1.25 \times 10^6 \text{ N}^2$. Thus we have:

$$\left(\frac{\partial F}{\partial \epsilon}\right)^2 \Delta \epsilon^2 = 1.25 \times 10^6 \implies \Delta \epsilon = 9.39 \times 10^{-5} \implies \overline{\sigma_\epsilon} = 3.13 \times 10^{-5}$$

$$\left(\frac{\partial F}{\partial b}\right)^2 \Delta b^2 = 1.25 \times 10^6 \implies \Delta b = 6.90 \times 10^{-4} \implies \overline{\sigma_b} = 2.30 \times 10^{-4}$$

$$\left(\frac{\partial F}{\partial t}\right)^2 \Delta t^2 = 1.25 \times 10^6 \implies \Delta t = 8.28 \times 10^{-5} \implies \overline{\sigma_t} = 2.76 \times 10^{-5}$$

$$\left(\frac{\partial F}{\partial r}\right)^2 \Delta r^2 = 1.25 \times 10^6 \implies \Delta r = 2.07 \times 10^{-3} \implies \overline{\sigma_r} = 6.90 \times 10^{-4}$$

$$\left(\frac{\partial F}{\partial \theta}\right)^2 \Delta \theta^2 = 1.25 \times 10^6 \implies \Delta \theta = 2.75 \times 10^{-3} \implies \overline{\sigma_\theta} = 9.17 \times 10^{-4}$$

If uncertainty is based on absolute limits, then each of the quantities on RHS is $\frac{2500}{5} = 500$ N.

$$\begin{vmatrix} \frac{\partial F}{\partial \epsilon} \\ \Delta \epsilon = 500 \implies \Delta \epsilon = 4.20 \times 10^{-5} \implies \sigma_{\epsilon} = 1.40 \times 10^{-5} \\ \begin{vmatrix} \frac{\partial F}{\partial b} \\ \Delta b = 500 \implies \Delta b = 3.09 \times 10^{-4} \implies \sigma_{b} = 1.03 \times 10^{-4} \\ \begin{vmatrix} \frac{\partial F}{\partial t} \\ \partial t = 500 \implies \Delta t = 3.70 \times 10^{-5} \implies \sigma_{t} = 1.23 \times 10^{-5} \\ \begin{vmatrix} \frac{\partial F}{\partial r} \\ \partial r = 500 \implies \Delta r = 9.24 \times 10^{-4} \implies \sigma_{r} = 3.08 \times 10^{-4} \\ \begin{vmatrix} \frac{\partial F}{\partial \theta} \\ \partial \theta = 500 \implies \Delta \theta = 1.23 \times 10^{-3} \implies \sigma_{\theta} = 4.21 \times 10^{-4} \end{aligned}$$