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Note To Reader

This document is a compilation of the notes I made while taking the course ME 226 (Mechanical
Measurements) in my 4th semester at IIT Bombay. It is not a substitute for any formal lecture or
textbook on the subject, since I pretty much overlook all the theory parts.

If you have any suggestions and/or spot any errors, you know where to contact me.

1 Introduction & Basic Concepts

Some definitions:

− sensitivity: slope of the output vs input curve for an instrument

− span: difference between maximum and minimum possible measurements for an instrument

− range: difference between maximum and minimum deflection for an instrument

− resolution: smallest measurable change in input

− threshold: smallest measurable input

− hysteresis: inability of instrument to give repeatable results during loading and unloading
(hysteresis loss = area under the input-output curve)

Error in an instrument is a combination of 2 factors - bias (correctable by calibration) and impre-
cision (permanent component caused due to human error).

I − no bias, no imprecision

II − bias, no imprecision

III − no bias, imprecision

IV − bias, imprecision

Additionally, results should be fairly repeatable (i.e. re-
peating the measurements should yield similar values).

Basic Statistics:

probability density function =
(number of readings in an interval)

(total number of readings)× (width of interval)

Plot pdf as a function of interval length − area under the curve is 1. On dividing the data into

very small intervals, the pdf is a continuous function f(x) such that P (a < x < b) =

∫ b

a
f(x)dx.
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In practice, many measurement sets are very close to the Gaussian distribution f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

For an ideal condition −∞ < x <∞, but instruments cannot have infinite range.

for a population for a sample

mean value µ =

N∑
i=1

xi

N
X̄ =

n∑
i=1

xi

n

variance σ2 =

N∑
i=1

(xi − µ)2

N
s2 =

n∑
i=1

(xi − X̄)2

n− 1

A population refers to a continuous data distribution whereas a sample refers to the fixed number
of discrete data points. 68%, 95%, 99.7% readings lie in the ±σ,±2σ,±3σ range respectively.

Method of Least Squares:

Assume a linear fit y = mx + c. We define the error E =

N∑
k=1

((mxk + c)− yk)2. In order to

minimize the error,
∂E

∂m
= 0 =⇒

∑
2(mxk + c− yk)xk = 0

∂E

∂c
= 0 =⇒

∑
2(mxk + c− yk) = 0

Solving this as a system of linear equations, we get

m =
1

D

(
N
∑

xkyk −
∑

xk
∑

yk

)
c =

1

D

(
N
∑

x2k
∑

yk −
∑

xk
∑

xkyk

)
D = N

∑
x2k −

(∑
xk

)2
The variances in y, x,m, c are calculated using the following formulae:

s2y =
1

N − 2

∑
(mxk + c− yk)2 s2x =

s2y
m2

s2m =
Ns2y

N
∑
x2k − (

∑
xk)

2 s2c =
s2y
∑
x2k

N
∑
x2k − (

∑
xk)

2

The Error Function:

We have the Gaussian distribution given by f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . Define η =
x− µ
σ
√

2
. The error

function is defined as erf(η) =
2√
π

∫ η

0
e−t

2
dt. It follows that erf(−η) = −erf(η).

P (X < x) = F (x) =
1

2
(1 + erf(η))

P (x1 < X < x2) = F (x2)− F (x1) =
1

2
(erf(η2)− erf(η1))
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A table for error function values is as follows:

Combination of Component Errors:

Measured quantities are often influenced by a combination of other measured quantities (for ex-
ample, stored potential energy = ρgh). Let quantity P = f(u1, u2, . . . , un) with individual errors
∆u1,∆u2, . . . ,∆un.

absolute error = ∆P =

∣∣∣∣ ∂f∂u1∆u1

∣∣∣∣+

∣∣∣∣ ∂f∂u2∆u2

∣∣∣∣+ · · ·+
∣∣∣∣ ∂f∂un∆un

∣∣∣∣
root sum square error = ERSS =

√(
∂f

∂u1
∆u1

)2

+

(
∂f

∂u2
∆u2

)2

+ · · ·+
(
∂f

∂un
∆un

)2

For N measurements of each of the quantities,

σ2P =

(
∂f

∂u1

)
σ21 +

(
∂f

∂u2

)
σ22 + · · ·+

(
∂f

∂un

)
σ2n
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Error Analysis of Voltmeters and Ammeters:

For a voltmeter, we first calculate the equivalent resistanceReq across the points where the voltmeter
is to be connected. Then,

measured voltage Em =
Rm

Rm +Req
E0 and error ε = 1− Em

E0
=

Req
Rm +Req

For an ammeter, we again calculate Req (this time the meter will be in series with the rest of the
circuit). Then,

measured current Im =
Req

Rm +Req
Iu and error ε = 1− Im

Iu
=

Rm
Rm +Req

2 Dynamic Characteristics

General mathematical model (input qi → output q0) of a system can be represented by:

an
dnq0
dtn

+ an−1
dn−1q0
dtn−1

+ · · ·+ a1
dq0
dt

+ a0q0 = bm
dmqi
dtm

+ bm−1
dm−1qi
dtm−1

+ · · ·+ b1
dqi
dt

+ b0qi

Normally we don’t specify the input derivatives, so we replace the RHS by just qi. Sometimes we
may also need to employ techniques like the Laplace transform to solve certain problems.

Zero Order Systems:

The general equation can be written as a0q0 = b0qi =⇒ q0 =
b0
a0
qi = Kqi.

− K is the static sensitivity of the system

− output is instantaneous with respect to input (i.e. φ = 0)

An example of a zero order system is a potentiometer. The emf e0 =
x

L
Eb is a function of only

variable, i.e. distance of the sliding contact.
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2.1 First Order Systems

The general equation characterizing a first order system is:

a1
dq0
dt

+ a0q0 = b0qi

∴
a1
a0

dq0
dt

+ q0 =
b0
a0
qi

∴ (τD + 1)q0 = Kqi =⇒ q0
qi

(D) =
K

1 + τD

τ is the time constant whereas K is the static sensitivity of the system.

With certain assumptions, we can model a thermometer as a 1st order system. Its relies on thermal
expansion of the liquid column in response to changes in the surrounding temperature.

β = coefficient of volume expansion
V = volume of bulb

Ac = cross-sectional area of capillary
ρ = density of thermometer fluid

Cp = specific heat capacity of thermometer fluid
h = heat transfer coefficient
As = surface area of bulb


K =

βV

Ac
and τ =

ρCpV

hAs

The differential equation obtained is:

dT

dt
+

hAs
ρCpV

T =
hAsTf
ρCpV

=⇒ dy

dt
+ p(t)y = g(t)

y(t) =

∫
e
∫
p(t)dtg(t)dt+ C

e
∫
p(t)dt

=⇒ T = Tf + (T0 − Tf )e−t/τ

Step Response:

For a step response, the input qi is constant. Hence, the governing equation is:

(τD + 1)q0 = Kqi =⇒ q0 = Kqi + Ce−t/τ )

For zero initial conditions, we have q0 = Kqi(1− e−t/τ ). Thus, the response time depends only on
the value of τ . The error for a step response can be written as

em = Kqi − q0 = Kqie
−t/τ
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Ramp Response:

The governing equation is (τD + 1)q0 = Kqirampt. Applying the Laplace transform, we get

q0 =
Kqirampt

(1 + τD)
=⇒ Q0(s) =

Kqiramp
s2(1 + τs)

=⇒ Q0(s)

Kqiramp
=

1

s2
− τ

s
+

1

s+ 1
τ

Inverting the Laplace transform, we finally get

q0(t) = Kqiramp(t− τ) +Kqirampτe
−t/τ and em = Kqirampτ(1− e−t/τ )

The steady state error (i.e. component of error that stays constant with time) is given by ess =
Kqirampτ (often we assume K = 1). The transient error eventually converges to 0, thus there is
always an error of ess even for very large values of time.

Impulse Response:

We initially assume a step input of magnitude A/T applied for time T . The impulse response can
then be found in the limit T → 0.

q0 =
A

T
(1− e−t/τ ) for 0 6 t 6 T

q0 =
A(1− e−T/τ )e−t/τ

Te−T/τ
for t > T

In the limit T → 0, we get the impulse response as

q0 =
A

T
e−t/τ

Frequency Response:

q0
Kqi

=
1

1 + τD
=

1

1 + jτω
=⇒ q0

Kqi
=

1√
1 + τ2ω2

; φ = arctan(−τω)

∴ for input qi = a sin(ωt)→ output q0 =
a√

1 + τ2ω2
sin(ωt+ φ)

As observed, the frequency response has a magnitude as well as a phase difference associated with

it. An ideal frequency response would have
q0
Kqi

= 1 and φ = 0.

2.2 Second Order Systems

The general equation characterizing a second order system is:

a2
d2q0
dt2

+ a1
dq0
dt

+ a0q0 = b0qi

∴
a2
a0

d2q0
dt2

+
a1
a0

dq0
dt

+ q0 =
b0
a0
qi

A very common example of a second order system is that of a mass, spring and damper. The
force applied by the spring depends on the displacement x while the force applied by the damper
depends on the velocity v.
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m
d2x

dt2
= F −Kx−Bdx

dt
=⇒ (mD2 +BD +K)x = F =⇒

(
m

k
D2 +

B

K
D + 1

)
x =

F

K

Replacing ωn =

√
K

m
and ζ =

B

2
√
mK

, we get

(
D2

ω2
n

+
2ζD

ωn
+ 1

)
x =

F

k

Step, Ramp & Impulse Responses:

All of the following equations can be derived using the fundamental differential equation

ÿ + 2ζωnẏ + ω2
ny = f(t)

− damped natural frequency ωd =
√

1− ζ2ωn for 0 6 ζ < 1

− phase angle ψ = arctan(
ζ√

1− ζ2
) for 0 6 ζ < 1

− time constants for overdamped (ζ > 1) systems are

τ1 =
1

ζωn −
√
ζ2 − 1ωn

and τ2 =
1

ζωn +
√
ζ2 − 1ωn
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The impulse response can be found by simply differentiating the step response. Similarly, the ramp
response can be found by integrating the step response.

For a ramp response, the steady state error is given by

em,ss =
2ζqiramp
ωn

Some important observations from the above equations are as follows:

− overdamped systems have a sluggish response (i.e. large time delay to reach desired output)

− underdamped system have an oscillatory response depending on the damping coefficient

− critically damped systems have the most desirable performance

− in most systems, ωnt is determined by the response, so we often try to design ωn to be as
large as possible

− most commercial systems tend to use 0.6 < ζ < 0.7, since the system gives ≈ 90% accuracy
at ωnt = 2.5

Frequency Response:

The general equation for frequency response of a second order system is:(
D2

ω2
n

+
2ζD

ωn
+ 1

)
q0 = Kqi =⇒ q0

Kqi
=

1

D2

ω2
n

+
2ζD

ωn
+ 1

=⇒ q0
Kqi

=
1

−ω2

ω2
n

+
2ζω

ωn
j + 1

∴
q0
Kqi

=
1√(

1− ω2

ω2
n

)2

+

(
2ζω

ωn

)2
; φ = arctan

 −2ζ
ωn
ω
− ω

ωn


When ω/ωn is small, the response for 0.6 < ζ < 0.7 is satisfactory. Also when the system frequency
matches the natural frequency of the device, resonance occurs in which φ = 0 and the amplitude
rises.

2.3 Combination of Systems

For systems in series, their individual transfer functions are simply multiplied. For example, 2 first
order systems in series give a second order system as follows:

for qi = (τ1D + 1)q01 and q01 = (τ2D + 1)q0

qi = (τ1D + 1)(τ2D + 1)q0 =⇒ qi = (τ1τ2D
2 + τ1D + τ2D + 1)qo

Comparing this with the standard equation for a second order system, we get τ1τ2 =
1

ω2
n

and

τ1 + τ1 =
2ζ

ωn
.
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