ME 226 - Mechanical Measurements

Instructor: Prof. Dipanshu Bansal
Last updated February 27, 2021

Om Prabhu
Undergraduate, Department of Mechanical Engineering
Indian Institute of Technology Bombay

NoTE To READER

This document is a compilation of the notes I made while taking the course ME 226 (Mechanical
Measurements) in my 4" semester at IIT Bombay. It is not a substitute for any formal lecture or
textbook on the subject, since I pretty much overlook all the theory parts.

If you have any suggestions and/or spot any errors, you know where to contact me.

1 Introduction & Basic Concepts

Some definitions:
— sensitivity: slope of the output vs input curve for an instrument
— span: difference between maximum and minimum possible measurements for an instrument
— range: difference between maximum and minimum deflection for an instrument
— resolution: smallest measurable change in input
— threshold: smallest measurable input
— hysteresis: inability of instrument to give repeatable results during loading and unloading

(hysteresis loss = area under the input-output curve)

Error in an instrument is a combination of 2 factors - bias (correctable by calibration) and impre-
cision (permanent component caused due to human error).
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L ' . - peating the measurements should yield similar values).

Basic Statistics:

(number of readings in an interval)
(total number of readings) x (width of interval)

probability density function =

Plot pdf as a function of interval length — area under the curve is 1. On dividing the data into

b
very small intervals, the pdf is a continuous function f(z) such that P(a <z < b) = / f(z)dz.
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In practice, many measurement sets are very close to the Gaussian distribution f(z) =

For an ideal condition —oco < & < oo, but instruments cannot have infinite range.

for a population for a sample
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A population refers to a continuous data distribution whereas a sample refers to the fixed number
of discrete data points. 68%, 95%, 99.7% readings lie in the +o, +20, +30 range respectively.

Method of Least Squares:

=

Assume a linear fit y = mz + ¢. We define the error £ = Z mxy + c) yk)2. In order to
k=1

minimize the error,

OFE
%:O: E 2(mzxk + ¢ —yg)xp =0
OF
66—0:> E 2(map +c—yk) =0

Solving this as a system of linear equations, we get
= % (Nzl‘kyk - Zxkzyk)
= % (szﬂizyk - Zxkzxkyk)
D= Nsz — (Zxk)2

The variances in y, z, m, ¢ are calculated using the following formulae:
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The Error Function:
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function is defined as erf(n \f/ ~*d¢. Tt follows that erf(—n) = —erf(n).

We have the Gaussian distribution given by f(z) =

The error

P X <x)=F(z)= %(1 +erf(n))

Pler < X < 2) = Flaz) — Fla1) = g{erf(m) = exf(m))



A table for error function values is as follows:
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Hundredths digit of x
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5

6

7

8

9

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
19
20
2.1
22
23
24
235
26
2.1
2.8
29
30
3:]
32

0.00000
0.11246
022270
032863
042839
0.52050
0.60386
0.67780
0.74210
0.79691
0.84270
0.88021
091031
0.93401
095229
096611
097635
098379
098900
0.99279
0.99532
0.99702
099814
0.99886
0.99931
09959
0.99976
0.99587
099992
0.99596
0.99998
0.99999
0.99599

0.01128
0.12362
0.23352
0.33891
043797
0.52924
0.61168
0.68467
0.74800
0.80188
0.84681
0.88353
0.91296
0.93606
0.95385
096728
097721
0.98441
0.98952
0.99300
0.99552
099715
0.99822
0.99891
0.99935
0.99961
0.99978
0.99987
0.99993
0.99996
0.99998
0.99999
0.99999

0.02256
0.13476
0.24430
034913
044747
053790
0.61941
0.69143
0.75381
080677
0.85084
0.88679
091553
093807
0.95538
096841
097804
0.98500
098994
099338
0.99572
099728
0.99831
099897
0.99938
0.99963
099979
(1.99988
0.99993
0.99996
099998
0.99999
0.99999

003384
0.14587
025502
035928
045689
0.54646
0.62705
069810
0.75952
081156
0.85478
0.88997
091805
094002
095686
096952
097884
098558
0.99035
099366
0.99591
099741
099839
0999502
099941
099965
0999580
099989
0999594
099997
099598
099599
1.00000

004511
0.15695
026570
0.36936
046623
0.554%
0.63459
0.70468
0.76514
081627
0.85865
0.89308
092051
094191
0.95830
097059
097962
098613
0.99074
099392
099609
0.99753
099846
099906
099944
099967
099981
0.99989
0999
0.99997
099998
0.99999
1.00000

0.05637
0.16800
0.27633
037938
047548
056332
0.64203
071116
0.77067
0.82089
0.86244
0.89612
092290
094376
0.95970
097162
0.98038
098667
099111
099418
099626
099764
0.99854
099911
0.99947
099969
099982
0.99990
0.99994
0.99997
0.99998
0.99999
1.00000

0.06762
0.17901
0.28690
0.38933
048466
057162
0.64938
0.71754
0.77610
0.82542
0.86614
0.89910
092524
094556
096105
097263
098110
098719
0.99147
0.99443
0.99642
099775
0.99861
099915
0.99950
099971
0.99983
0.9999]
0.99995
0.99997
0.99998
0.99999
1.00000

0.07886
(0.18999
0.29742
0.39921
049375
(0.57982
0.65663
0.72382
0.78144
0.82987
0.86977
0.90200
092751
0.94731
0096237
097360
0.98181
098769
0.99182
0.99466
0.99658
099785
(1.99867
0.99920
0.99952
0.99972
(1.99954
0.99991
0.99995
0.99997
0.9999%
0.99999
1.00000

0.09008
0.20094
0.30788
040901
050275
0.58792
0.66378
0.73001
0.78669
0.83423
0.87333
090484
0.92973
0.94902
096365
0.97455
098249
098817
099216
099489
099673
0.99795
099874
099924
0.99955
099974
0.99985
0.99992
0.99995
0.99997
099999
0.99999
1.00000

0.10128
021184
0.31828
041874
051167
0.595%
0.67084
0.73610
0.79184
0.83851
0.87680
0.90761
(0.93190
095067
0.96490
0.97546
0.98315
098864
0.99248
099511
0.99688
(0.99805
0.99880
0.99928
0.99957
0.99975
(0.99986
0.99992
0.99996
0.99998
0.99999
(0.99999
1.00000

Combination of Component Errors:

Measured quantities are often influenced by a combination of other measured quantities (for ex-

ample, stored potential energy = pgh). Let quantity P = f(uy,uo,..

Aug, Aug, ..., Auy,.

absolute error = AP =

root sum square error = Frgg = \/ (

of
8—mAU1

+\

of
8—UQAU/2

=+ .-

of

Oy

For N measurements of each of the quantities,

a;:(

of

duy

)0%4—

duy

3

i

2 2
o7 Aul) + (ﬁAUQ) +- <
8’&2

aj‘) o34 - J?I;) o2

ouy,

of

Ouy,

2
Aun)

., Up) with individual errors




Error Analysis of Voltmeters and Ammeters:

For a voltmeter, we first calculate the equivalent resistance R, across the points where the voltmeter
is to be connected. Then,
En o Req

measured voltage E,, = ———~——F, and errore=1— — = ——“1___
& Rm + Req 0 EO Rm + Req

For an ammeter, we again calculate R, (this time the meter will be in series with the rest of the
circuit). Then,

R, 1 R
measured current I,,, = ————J, and error e =1 — —% = m

Rm + Req Iu Rm + Req

2 Dynamic Characteristics

General mathematical model (input ¢; — output ¢g) of a system can be represented by:

d"qo d"'qo dqo d"g; d" g dg;
g 0=t gt T 0y 0000 = b g bt gy e b bods

Normally we don’t specify the input derivatives, so we replace the RHS by just ¢;. Sometimes we
may also need to employ techniques like the Laplace transform to solve certain problems.

[ 16-ng@ ar F(s)G(s)
T
1—eT
f'(¢) sF(s) — £ (0)
@ §2F (s) — s (0) — f' (0)
F (t) s"F (5) — 8" 1 (0) — 8" 2f(0) -+ — Sf(n 2) (0) — f(n 1) (0)

Zero Order Systems:
b
The general equation can be written as agqp = bogs = qo = —Oqi = Kg;.
ao
— K is the static sensitivity of the system

— output is instantaneous with respect to input (i.e. ¢ = 0)

x
An example of a zero order system is a potentiometer. The emf ey = ZEb is a function of only

variable, i.e. distance of the sliding contact.



2.1 First Order Systems

The general equation characterizing a first order system is:

dqo
aldi(i + apqo = bog;
. ardgo _bo
“ag dt +qo_a0ql
qo K
s (tD+1 =Kqg = —(D) =
(7D +1)qo i qi( ) 157D

T is the time constant whereas K is the static sensitivity of the system.

With certain assumptions, we can model a thermometer as a 15 order system. Its relies on thermal
expansion of the liquid column in response to changes in the surrounding temperature.

B = coefficient of volume expansion )

V = volume of bulb

A, = cross-sectional area of capillary

p = density of thermometer fluid » K = — and 7=

C) = specific heat capacity of thermometer fluid
h = heat transfer coefficient

A, = surface area of bulb

The differential equation obtained is:

dT  hA, ., hAJTy dy

— T = — t)y = g(t
it oovl T oy 0 a TPy =90

_ [elPOdtgpyar + C
- e p(t)dt

— T =T+ (To—T)e /"

Step Response:
For a step response, the input ¢; is constant. Hence, the governing equation is:
(tD+1)go = K¢ = qo= K¢ +Ce V")

For zero initial conditions, we have gy = K¢;(1 — et/ 7). Thus, the response time depends only on
the value of 7. The error for a step response can be written as

em = Kqi —qo = Kgie "/
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Ramp Response:

The governing equation is (7D + 1)go = K @irampt. Applying the Laplace transform, we get

KQirampt QO(S) _ KQiramp — QO(S) _ 1 T 1

©= 11 7D) - =

32(1 + TS) KQiramp 52 S S+ %

Inverting the Laplace transform, we finally get
QO( ) K%ramp( ) + KQZrampTe t/r and e, = KQirampT(l - eit/T)

The steady state error (i.e. component of error that stays constant with time) is given by egs =
K girampt (often we assume K = 1). The transient error eventually converges to 0, thus there is
always an error of es; even for very large values of time.

Impulse Response:

We initially assume a step input of magnitude A/T applied for time 7". The impulse response can
then be found in the limit T — 0.

A
qozf(l—e_tﬁ) for0<t<T

A(l _ efT/‘r)eft/T

40 = Te T/~ fort > T
In the limit 7" — 0, we get the impulse response as
A —t/T
q0 = fe
Frequency Response:
90 1 1 0 1

= = - = = ; ¢ = arctan(—Tw
Kqg 1+7D 1+ jrw Kq 14 12w? ¢ ( )

", for input ¢; = asin(wt) — output gy = sin(wt + @)
1+ 72w?
As observed, the frequency response has a magnitude as well as a phase difference associated with
it. An ideal frequency response would have D _1 and ¢ =0.
qi

2.2 Second Order Systems

The general equation characterizing a second order system is:

qu d

2 g2 ‘f’alE‘FaOQO:bOQi
Caad’qo | a1 dgo _bo
“ag dt? +a dt +a O_aoqZ

A very common example of a second order system is that of a mass, spring and damper. The
force applied by the spring depends on the displacement x while the force applied by the damper
depends on the velocity v.
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Replacing w,, = {/ — and ( = ——, we get
placing wn = 4/ — ¢ Wy el
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Step, Ramp & Impulse Responses:

m

k

All of the following equations can be derived using the fundamental differential equation

i+ 2Cwny + wiy = f(t)

B F
2, b _r
D+KD+1>IL’ %

Damping ratio | Input f(t)

Characteristic Response y(t)

- 2= 1 —lyt . —lin L
Ft) = us(t) | wat) = — [1— e7nt — wptement]

0<(¢<1 f(t) =u(t) | w(t) = é t+ E_C:Hf (ZCcoswdt + %sﬁnwﬁ) — i—i]
1 e~ Cwnt
f(t) = us(t) y.s(")_@ [l—ﬁm“:(wdf—t)]
o~ Cwnt
ft)y=26(t) | us(t)= ﬁsm (wat)
= | Ft) =u:(t) | uolt) = wig [t + ie_w“f‘ + te~Wnt — =

. _ . _ 1 Wn 2 —t/m _ 2 —t)r 26
C>1 | ) =wlt) | wlt) = g ¢+ gty (e — e ) - 5
_1 “n —t/7 —t/
£ =us(t) | () = 5 [1— s (e /™ e rxz)]
= — 1 /T —t/ T2
f(t) =4(t) ys(t) = m (6 —e )

— damped natural frequency wg = /1 — 2w, for 0 < ¢ < 1
_ <
V1—¢2
— time constants for overdamped ({ > 1) systems are

1

— phase angle ¢ = arctan( yfor0< (<1

1

and 7 =

T =

7

Cwn -V <2 - 1wn Cwn +

CZ - 1wn




The impulse response can be found by simply differentiating the step response. Similarly, the ramp
response can be found by integrating the step response.

For a ramp response, the steady state error is given by

2(Qiramp
Wn,

€m,ss =

Some important observations from the above equations are as follows:

— overdamped systems have a sluggish response (i.e. large time delay to reach desired output)
— underdamped system have an oscillatory response depending on the damping coefficient
— critically damped systems have the most desirable performance

— in most systems, wy,t is determined by the response, so we often try to design w, to be as
large as possible

— most commercial systems tend to use 0.6 < ¢ < 0.7, since the system gives &~ 90% accuracy
at wyt = 2.5

Frequency Response:

The general equation for frequency response of a second order system is:

D? 2(D > 9 1 Q0 1
w2 Kq; D? 2(D K¢ —w? 2w
n n qi = 4 ¢ +1 di - + ¢ j+1
wy Wn, Wpn Wn
qo 1 —2(
= ; ¢ = arctan R

.'Kq' 2\ 2 2. “n _ =
ey TR
w# Wn,

When w/w,, is small, the response for 0.6 < ¢ < 0.7 is satisfactory. Also when the system frequency
matches the natural frequency of the device, resonance occurs in which ¢ = 0 and the amplitude
rises.

2.3 Combination of Systems

For systems in series, their individual transfer functions are simply multiplied. For example, 2 first
order systems in series give a second order system as follows:

for ¢; = (11D + 1)go1 and qo1 = (2D + 1)qo
¢ = (D +1)(12D +1)q0 = ¢; = (172D’ + 1D + 7D + 1)g,

Comparing this with the standard equation for a second order system, we get 770 = — and
w

2

2 "
T+7=—
n



