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DISCLAIMER

This document is a compilation of the notes I made while taking the course ME 202 (Strength of
Materials) in my 4" semester at IIT Bombay. Even though I try to discuss as much theory as
possible, this is not a substitute to any formal teaching material on the subject.

There will probably be many instances where I use certain common symbols without explicitly
mentioning what they mean. It is to be assumed that they carry their usual meanings.

If you have any suggestions and/or spot any errors, you know where to contact me.
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1 Torsion of Circular Shafts

rod axial loading framme axial as well as
beam transverse/shear loading shear loading
shaft torsional loading

— torque: causes twist or torsion in a machine element
— shaft: transmits rotary motion from one location to another

i) Internal Resisting Torque (method of sections)

FBDs at different sections:
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The results can be shown using a torque diagram.

Direction of torque is decided using right hand thumb rule, i.e. thumb along 250
+ve z-direction and direction of curling of fingers corresponds to +ve torque. L175

To define the origin, consider the element you come across first when you ‘
travel along that direction (A, in this case). ! .

If external torque varies with z, take a section at an arbitrary z and find
internal resisting torque as a function of z, i.e. T'(z).
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ii) Some Observations
— each circular cut remains a circle

— longitudinal lines deform helically & intersect the circles at equal
2 angles

P~ Longitudinal

lines become — cross-sections of shaft ends remain flat

twisted

Circles remain _
circular

— radial lines on the flat ends remain straight
“Radial lines Non-circular shafts often undergo a phenomenon called warping (a

remain straight . .
topic for a later time).

iii) Shear Strain 7
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Notice how the element is initially rectangular and later gets distorted. This gives rise to a shear
strain and as a result, shear stress. As a kinematic assumption, the cross-sections remain planar
and rotate rigidly under the load.
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iv) Shear Stress 7 and the Torsion Formula

T(z4+ Az)+t(2)Az—T(2) =0 = % +t(z) =0

The moment due to the shear stresses must equal the external torque T'(z). Thus T'(z) = / TrdA.
A(z)
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The polar moment of inertia J = [ r2dA = 2.0,
A m(rg — ;) :
— 5 for annular cross-sections

Due to the complementary properties of the shear stress, an associated shear stress is also developed
in the plane parallel to the z-axis.

v) Angle of Twist



